Still, even if you acknowledge that cosmetic neurology is here to stay, there is something dispiriting about the way the drugs are used - the kind of aspirations they open up, or don't. Jonathan Eisen, an evolutionary biologist at the University of California, Davis, is sceptical of what he mockingly calls "brain doping". During a recent conversation, he spoke about colleagues who take neuroenhancers in order to grind out grant proposals. "It's weird to me that people are taking these drugs to write grants," he said. "I mean, if you came up with some really interesting paper that was spurred by taking some really interesting drug - magic mushrooms or something - that would make more sense to me. In the end you're only as good as the ideas you've come up with."

Clarke and Sokoloff (1998) remarked that although [a] common view equates concentrated mental effort with mental work…there appears to be no increased energy utilization by the brain during such processes (p. 664), and …the areas that participate in the processes of such reasoning represent too small a fraction of the brain for changes in their functional and metabolic activities to be reflected in the energy metabolism of the brain… (p. 675).

But, thanks to the efforts of a number of remarkable scientists, researchers and plain-old neurohackers, we are beginning to put together a “whole systems” model of how all the different parts of the human brain work together and how they mesh with the complex regulatory structures of the body. It’s going to take a lot more data and collaboration to dial this model in, but already we are empowered to design stacks that can meaningfully deliver on the promise of nootropics “to enhance the quality of subjective experience and promote cognitive health, while having extremely low toxicity and possessing very few side effects.” It’s a type of brain hacking that is intended to produce noticeable cognitive benefits.


A record of nootropics I have tried, with thoughts about which ones worked and did not work for me. These anecdotes should be considered only as anecdotes, and one’s efforts with nootropics a hobby to put only limited amounts of time into due to the inherent limits of drugs as a force-multiplier compared to other things like programming1; for an ironic counterpoint, I suggest the reader listen to a video of Jonathan Coulton’s I Feel Fantastic while reading.

So I eventually got around to ordering another thing of nicotine gum, Habitrol Nicotine Gum, 4mg MINT flavor COATED gum. 96 pieces per box. Gum should be easier to double-blind myself with than nicotine patches - just buy some mint gum. If 4mg is too much, cut the gum in half or whatever. When it arrived, my hopes were borne out: the gum was rectangular and soft, which made it easy to cut into fourths.
Colorful vegetables and fruits—such as leafy greens, peppers, beets, and berries—are high in carotenoids and anthocyanins, antioxidant pigments that provide their bright hues. “Antioxidants protect brain cell linings from the damage caused by free radicals, which are harmful molecules that cause inflammation and result from factors like a poor diet or smoking,” explains Janis Jibrin, RD, adjunct professor of nutrition at American University in Washington, D.C.
Nootroo and Nootrobox are two San Francisco nootropics startups that launched last year. Their founders come from the tech scene and their products are squarely aimed at the tech crowd seeking the convenience of not having to build their own combinations. Each claims big-name Silicon Valley entrepreneurs and investors among their users, though neither will name them.
Running low on gum (even using it weekly or less, it still runs out), I decided to try patches. Reading through various discussions, I couldn’t find any clear verdict on what patch brands might be safer (in terms of nicotine evaporation through a cut or edge) than others, so I went with the cheapest Habitrol I could find as a first try of patches (Nicotine Transdermal System Patch, Stop Smoking Aid, 21 mg, Step 1, 14 patches) in May 2013. I am curious to what extent nicotine might improve a long time period like several hours or a whole day, compared to the shorter-acting nicotine gum which feels like it helps for an hour at most and then tapers off (which is very useful in its own right for kicking me into starting something I have been procrastinating on). I have not decided whether to try another self-experiment.

SOURCES: Ray Sahelian, MD. Psychopharmacology, September 2000. Human Psychopharmacology, July 2001; January 2002. Psychopharmacology Bulletin, Summer 2002. The Cochrane Database of Systematic Reviews, 2002. Archives of Neurology, November 1998. Zhongguo Yao Li Xue Bao, July 1999. Pharmacological Research, September 1999. International Clinical Psychopharmacology, March 2003. FDA web site.
Alex recalled one week during his junior year when he had four term papers due. Minutes after waking on Monday, around 7.30am, he swallowed some "immediate-release" Adderall. The drug, along with a steady stream of caffeine, helped him to concentrate during classes and meetings, but he noticed some odd effects; at a morning tutorial, he explained to me in an email, "I alternated between speaking too quickly and thoroughly on some subjects and feeling awkwardly quiet during other points of the discussion." Lunch was a blur: "It's always hard to eat much when on Adderall." That afternoon he went to the library, where he spent "too much time researching a paper rather than actually writing it - a problem that is common to all intellectually curious students on stimulants". At eight he attended a two-hour meeting "with a group focused on student mental health issues". Alex then "took an extended-release Adderall" and worked productively on the paper all night. At eight the next morning he attended a meeting of his student organisation; he felt like "a zombie" and went back to his room. He fell asleep until noon, waking "in time to polish my first paper and hand it in".
I split the 2 pills into 4 doses for each hour from midnight to 4 AM. 3D driver issues in Debian unstable prevented me from using Brain Workshop, so I don’t have any DNB scores to compare with the armodafinil DNB scores. I had the subjective impression that I was worse off with the Modalert, although I still managed to get a fair bit done so the deficits couldn’t’ve been too bad. The apathy during the morning felt worse than armodafinil, but that could have been caused by or exacerbated by an unexpected and very stressful 2 hour drive through rush hour and multiple accidents; the quick hour-long nap at 10 AM was half-waking half-light-sleep according to the Zeo, but seemed to help a bit. As before, I began to feel better in the afternoon and by evening felt normal, doing my usual reading. That night, the Zeo recorded my sleep as lasting ~9:40, when it was usually more like 8:40-9:00 (although I am not sure that this was due to the modafinil inasmuch as once a week or so I tend to sleep in that long, as I did a few days later without any influence from the modafinil); assuming the worse, the nap and extra sleep cost me 2 hours for a net profit of ~7 hours. While it’s not clear how modafinil affects recovery sleep (see the footnote in the essay), it’s still interesting to ponder the benefits of merely being able to delay sleep19.
Similarly, we could try applying Nick Bostrom’s reversal test and ask ourselves, how would we react to a virus which had no effect but to eliminate sleep from alternating nights and double sleep in the intervening nights? We would probably grouch about it for a while and then adapt to our new hedonistic lifestyle of partying or working hard. On the other hand, imagine the virus had the effect of eliminating normal sleep but instead, every 2 minutes, a person would fall asleep for a minute. This would be disastrous! Besides the most immediate problems like safely driving vehicles, how would anything get done? You would hold a meeting and at any point, a third of the participants would be asleep. If the virus made it instead 2 hours on, one hour off, that would be better but still problematic: there would be constant interruptions. And so on, until we reach our present state of 16 hours on, 8 hours off. Given that we rejected all the earlier buffer sizes, one wonders if 16:8 can be defended as uniquely suited to circumstances. Is that optimal? It may be, given the synchronization with the night-day cycle, but I wonder; rush hour alone stands as an argument against synchronized sleep - wouldn’t our infrastructure would be much cheaper if it only had to handle the average daily load rather than cope with the projected peak loads? Might not a longer cycle be better? The longer the day, the less we are interrupted by sleep; it’s a hoary cliche about programmers that they prefer to work in long sustained marathons during long nights rather than sprint occasionally during a distraction-filled day, to the point where some famously adopt a 28 hour day (which evenly divides a week into 6 days). Are there other occupations which would benefit from a 20 hour waking period? Or 24 hour waking period? We might not know because without chemical assistance, circadian rhythms would overpower anyone attempting such schedules. It certainly would be nice if one had long time chunks in which could read a challenging book in one sitting, without heroic arrangements.↩
My first time was relatively short: 10 minutes around the F3/F4 points, with another 5 minutes to the forehead. Awkward holding it up against one’s head, and I see why people talk of LED helmets, it’s boring waiting. No initial impressions except maybe feeling a bit mentally cloudy, but that goes away within 20 minutes of finishing when I took a nap outside in the sunlight. Lostfalco says Expectations: You will be tired after the first time for 2 to 24 hours. It’s perfectly normal., but I’m not sure - my dog woke me up very early and disturbed my sleep, so maybe that’s why I felt suddenly tired. On the second day, I escalated to 30 minutes on the forehead, and tried an hour on my finger joints. No particular observations except less tiredness than before and perhaps less joint ache. Third day: skipped forehead stimulation, exclusively knee & ankle. Fourth day: forehead at various spots for 30 minutes; tiredness 5/6/7/8th day (11/12/13/4): skipped. Ninth: forehead, 20 minutes. No noticeable effects.
If this is the case, this suggests some thoughtfulness about my use of nicotine: there are times when use of nicotine will not be helpful, but times where it will be helpful. I don’t know what makes the difference, but I can guess it relates to over-stimulation: on some nights during the experiment, I had difficult concentrating on n-backing because it was boring and I was thinking about the other things I was interested in or working on - in retrospect, I wonder if those instances were nicotine nights.
When many of us think of memory enhancers, we think of ginkgo biloba, the herb that now generates more than $240 million in sales a year worldwide. The October 22-29, 1997 issue of the Journal of the American Medical Association reported that Alzheimer's patients who took 120 mg of ginkgo showed small improvements in tests designed to measure mental performance.
There are over a thousand websites and hundreds of reference guides chock full of complicated methods for combining many of the compounds you’ve just discovered. There’s a reason for this: the practice of “stacking” nootropics and smart drugs into specific combinations can be far more powerful and efficacious than consuming a single, lonely compound in isolation. For example, dosing choline sources with your morning coffee can make your brain feel fresh for hours or mixing curcumin with black pepper can dramatically amp up the neural anti-inflammatory effects of both compounds. Ultimately, a teaspoon of lion’s mane extract just isn’t as titillating as lion’s mane blended with caffeine, theanine, nicotine and a touch of vinpocetine.

Systematic reviews and meta-analyses of clinical human research using low doses of certain central nervous system stimulants found enhanced cognition in healthy people.[21][22][23] In particular, the classes of stimulants that demonstrate cognition-enhancing effects in humans act as direct agonists or indirect agonists of dopamine receptor D1, adrenoceptor A2, or both types of receptor in the prefrontal cortex.[21][22][24][25] Relatively high doses of stimulants cause cognitive deficits.[24][25]
×