Took pill 12:11 PM. I am not certain. While I do get some things accomplished (a fair amount of work on the Silk Road article and its submission to places), I also have some difficulty reading through a fiction book (Sum) and I seem kind of twitchy and constantly shifting windows. I am weakly inclined to think this is Adderall (say, 60%). It’s not my normal feeling. Next morning - it was Adderall.
Avocados are almost as good as blueberries in promoting brain health, Dr. Pratt told WebMD.com. These buttery fruits are rich in monounsaturated fat, which contributes to healthy blood flow in the brain, according to Ann Kulze, MD, author of Dr. Ann’s 10-Step Diet: A Simple Plan for Permanent Weight Loss & Lifelong Vitality. This helps every organ in your body—particularly the brain and heart. Avocados also lower blood pressure, thanks to their potassium. Because high blood pressure can impair cognitive abilities, lower blood pressure helps to keep the brain in top form and reduce your risks for hypertension or a stroke. The fiber in avocados also reduces the risk of heart disease and bad cholesterol.  These foods are good for your brain later in life.

1. Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T., & Nathan, P. J. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl), 156(4), 481-484. 2. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complementary and Alternative Medicine, 12(1), 70. doi:10.1186/1472-6882-12-703. Pase, M. P., Kean, J., Sarris, J., Neale, C., Scholey, A. B., & Stough, C. (2012). The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med, 18(7), 647-652. doi:10.1089/acm.2011.03674. Raghav, S., Singh, H., Dalal, P. K., Srivastava, J. S., & Asthana, O. P. (2006). Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry, 48(4), 238-242. doi:10.4103/0019-5545.315555. Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2013). Cognitive effects of two nutraceuticals Ginseng and Bacopa [...]: a review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75(3), 728-737. doi:10.1111/bcp.120026. Prynne, C. J., Thane, C. W., Prentice, A., & Wadsworth, M. E. (2005). Intake and sources of phylloquinone (vitamin K(1)) in 4-year-old British children: comparison between 1950 and the 1990s. Public Health Nutr, 8(2), 171-180.7. Ferland, G. (2012). Vitamin K and the nervous system: an overview of its actions. Adv Nutr, 3(2), 204-212. doi:10.3945/an.111.0017848. Zeidan, Y. H., & Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends in molecular medicine, 13(8), 327-336.9. Beulens, J. W., Bots, M. L., Atsma, F., Bartelink, M. L., Prokop, M., Geleijnse, J. M., . . . van der Schouw, Y. T. (2009). High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis, 203(2), 489-493. doi:10.1016/j.atherosclerosis.2008.07.01010. Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H., van der Meer, I. M., . . . Witteman, J. C. (2004). Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr, 134(11), 3100-3105.11. Theuwissen, E., Magdeleyns, E. J., Braam, L. A., Teunissen, K. J., Knapen, M. H., Binnekamp, I. A., . . . Vermeer, C. (2014). Vitamin K status in healthy volunteers. Food Funct, 5(2), 229-234. doi:10.1039/c3fo60464k12. Barros, M. P., Poppe, S. C., & Bondan, E. F. (2014). Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients, 6(3), 1293-1317.13. Pashkow, F. J., Watumull, D. G., & Campbell, C. L. (2008). Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 101(10a), 58d-68d. doi:10.1016/j.amjcard.2008.02.01014. Annweiler, C., Schott, A. M., Berrut, G., Chauvire, V., Le Gall, D., Inzitari, M., & Beauchet, O. (2010). Vitamin D and ageing: neurological issues. Neuropsychobiology, 62(3), 139-150. doi:10.1159/00031857015. Brown, J., Bianco, J. I., McGrath, J. J., & Eyles, D. W. (2003). 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett, 343(2), 139-143.16. Naveilhan, P., Neveu, I., Wion, D., & Brachet, P. (1996). 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 7(13), 2171-2175.17. Tangpricha, V., Pearce, E. N., Chen, T. C., & Holick, M. F. (2002). Vitamin D insufficiency among free-living healthy young adults. Am J Med, 112(8), 659-662.18. Annweiler, C., Allali, G., Allain, P., Bridenbaugh, S., Schott, A. M., Kressig, R. W., & Beauchet, O. (2009). Vitamin D and cognitive performance in adults: a systematic review. European Journal of Neurology, 16(10), 1083-1089. doi:10.1111/j.1468-1331.2009.02755.x19. Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., Richard-Devantoy, S., Duque, G., & Beauchet, O. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis, 37(1), 147-171. doi:10.3233/jad-13045220. Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., . . . Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology, 79(13), 1397-1405.21. Dean, A. J., Bellgrove, M. A., Hall, T., Phan, W. M. J., Eyles, D. W., Kvaskoff, D., & McGrath, J. J. (2011). Effects of Vitamin D Supplementation on Cognitive and Emotional Functioning in Young Adults – A Randomised Controlled Trial. PLoS One, 6(11), e25966. doi:10.1371/journal.pone.002596622. Etgen, T., Sander, D., Bickel, H., Sander, K., & Forstl, H. (2012). Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord, 33(5), 297-305. doi:10.1159/00033970223. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest, 35(11), 691-699. doi:10.1111/j.1365-2362.2005.01570.x24. Huhn, S., Masouleh, S. K., Stumvoll, M., Villringer, A., & Witte, A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Frontiers in aging neuroscience, 7.25. Bradbury, J. (2011). Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients, 3(5), 529-554. doi:10.3390/nu305052926. Einother, S. J., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl), 225(2), 251-274. doi:10.1007/s00213-012-2917-427. Johnson, L. C., Spinweber, C. L., & Gomez, S. A. (1990). Benzodiazepines and caffeine: effect on daytime sleepiness, performance, and mood. Psychopharmacology (Berl), 101(2), 160-167. 28. Smith, A., Kendrick, A., Maben, A., & Salmon, J. (1994). Effects of breakfast and caffeine on cognitive performance, mood and cardiovascular functioning. Appetite, 22(1), 39-55. doi:10.1006/appe.1994.100429. Smith, A. P., Kendrick, A. M., & Maben, A. L. (1992). Effects of breakfast and caffeine on performance and mood in the late morning and after lunch. Neuropsychobiology, 26(4), 198-204. doi:11892030. Smith, B. D., Davidson, R. A., & Green, R. L. (1993). Effects of caffeine and gender on physiology and performance: further tests of a biobehavioral model. Physiol Behav, 54(3), 415-422. 31. Warburton, D. M. (1995). Effects of caffeine on cognition and mood without caffeine abstinence. Psychopharmacology (Berl), 119(1), 66-70. 32. Wilhelmus, M. M., Hay, J. L., Zuiker, R. G., Okkerse, P., Perdrieu, C., Sauser, J., . . . Silber, B. Y. (2017). Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects. J Psychopharmacol, 31(2), 222-232. doi:10.1177/026988111666859333. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 51(1), 83-133. 34. Borzelleca, J. F., Peters, D., & Hall, W. (2006). A 13-week dietary toxicity and toxicokinetic study with l-theanine in rats. Food Chem Toxicol, 44(7), 1158-1166. doi:10.1016/j.fct.2006.03.01435. Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). L-Theanine reduces psychological and physiological stress responses. Biol Psychol, 74(1), 39-45. doi:10.1016/j.biopsycho.2006.06.00636. Tian, X., Sun, L., Gou, L., Ling, X., Feng, Y., Wang, L., . . . Liu, Y. (2013). Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res, 1503, 24-32. doi:10.1016/j.brainres.2013.01.04837. Unno, K., Fujitani, K., Takamori, N., Takabayashi, F., Maeda, K., Miyazaki, H., . . . Hoshino, M. (2011). Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice. Free Radic Res, 45(8), 966-974. doi:10.3109/10715762.2011.56686938. Unno, K., Tanida, N., Ishii, N., Yamamoto, H., Iguchi, K., Hoshino, M., . . . Yamada, H. (2013). Anti-stress effect of theanine on students during pharmacy practice: positive correlation among salivary alpha-amylase activity, trait anxiety and subjective stress. Pharmacol Biochem Behav, 111, 128-135. doi:10.1016/j.pbb.2013.09.00439. Dodd, F. L., Kennedy, D. O., Riby, L. M., & Haskell-Ramsay, C. F. (2015a). A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood. Psychopharmacology (Berl), 232(14), 2563-2576. doi:10.1007/s00213-015-3895-040. Rogers, P. J., Smith, J. E., Heatherley, S. V., & Pleydell-Pearce, C. W. (2008). Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology (Berl), 195(4), 569-577. doi:10.1007/s00213-007-0938-141. Foxe, J. J., Morie, K. P., Laud, P. J., Rowson, M. J., de Bruin, E. A., & Kelly, S. P. (2012). Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology, 62(7), 2320-2327. doi:10.1016/j.neuropharm.2012.01.02042. Giesbrecht, T., Rycroft, J. A., Rowson, M. J., & De Bruin, E. A. (2010). The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness. Nutr Neurosci, 13(6), 283-290. doi:10.1179/147683010x1261146076484043. Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol, 77(2), 113-122. doi:10.1016/j.biopsycho.2007.09.00844. Kahathuduwa, C. N., Dassanayake, T. L., Amarakoon, A. M., & Weerasinghe, V. S. (2016). Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr Neurosci. doi:10.1080/1028415x.2016.114484545. Owen, G. N., Parnell, H., De Bruin, E. A., & Rycroft, J. A. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutr Neurosci, 11(4), 193-198. doi:10.1179/147683008x30151346. Einother, S. J., Martens, V. E., Rycroft, J. A., & De Bruin, E. A. (2010). L-theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite, 54(2), 406-409. doi:10.1016/j.appet.2010.01.00347. Deijen, J. B., van der Beek, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology (Berl), 109(4), 489-496.48. Lewerin, C., Matousek, M., Steen, G., Johansson, B., Steen, B., & Nilsson-Ehle, H. (2005). Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr, 81(5), 1155-1162. 49. Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr, 132(6), 1345-1356. 50. Schneider, Z., & Stroinski, A. (1987). Comprehensive B12: chemistry, biochemistry, nutrition, ecology, medicine: Walter de Gruyter.51. Polich, J., & Gloria, R. (2001). Cognitive effects of a Ginkgo biloba/vinpocetine compound in normal adults: systematic assessment of perception, attention and memory. Hum Psychopharmacol, 16(5), 409-416. doi:10.1002/hup.30852. Subhan, Z., & Hindmarch, I. (1985). Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol, 28(5), 567-571. 53. Dollins, A. B., Krock, L. P., Storm, W. F., Wurtman, R. J., & Lieberman, H. R. (1995). L-tyrosine ameliorates some effects of lower body negative pressure stress. Physiol Behav, 57(2), 223-230. 54. Shurtleff, D., Thomas, J. R., Schrot, J., Kowalski, K., & Harford, R. (1994). Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol Biochem Behav, 47(4), 935-941. 55. Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., & Ford, I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev, 9(1), 41-50. 56. Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-Analysis: Melatonin for the Treatment of Primary Sleep Disorders. PLoS One, 8(5), e63773. doi:10.1371/journal.pone.006377357. Inagawa, K., Hiraoka, T., Kohda, T., Yamadera, W., & Takahashi, M. (2006). Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep and Biological Rhythms, 4(1), 75-77. doi:10.1111/j.1479-8425.2006.00193.x58. Bannai, M., Kawai, N., Ono, K., Nakahara, K., & Murakami, N. (2012). The Effects of Glycine on Subjective Daytime Performance in Partially Sleep-Restricted Healthy Volunteers. Front Neurol, 3, 61. doi:10.3389/fneur.2012.0006159. Yamadera, W., Inagawa, K., Chiba, S., Bannai, M., Takahashi, M., & Nakayama, K. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms, 5(2), 126-131. doi:10.1111/j.1479-8425.2007.00262.x60. Tuli, H. S., Kashyap, D., Sharma, A. K., & Sandhu, S. S. (2015). Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci, 135, 147-157. doi:10.1016/j.lfs.2015.06.00461. Herxheimer, A., & Petrie, K. J. (2002). Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev(2), Cd001520. doi:10.1002/14651858.cd00152062. Deng, X., Song, Y., Manson, J. E., Signorello, L. B., Zhang, S. M., Shrubsole, M. J., . . . Dai, Q. (2013). Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 11(1), 187. doi:10.1186/1741-7015-11-18763. Murck, H., & Steiger, A. (1998). Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men -- possible therapeutic implications. Psychopharmacology (Berl), 137(3), 247-252. 64. Nielsen, F. H., Johnson, L. K., & Zeng, H. (2010). Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res, 23(4), 158-168. doi:10.1684/mrh.2010.0220
Nootropics, also known as ‘brain boosters’, or ‘cognitive enhancers’ are made up of a variety of artificial and natural compounds that help in enhancing the cognitive activities of the brain by regulating or altering the production of neurochemicals and neurotransmitters in the brain. It improves blood flow, stimulates neurogenesis (the process by which neurons are produced in the body by neural stem cells), enhances nerve growth rate, modifies synapses, and improves cell membrane fluidity. Thus, positive changes are created within your body, which helps you to function optimally; whatever be your current lifestyle and individual needs.
Difficulty remembering.  As discussed previously, challenges with episodic memory may start as early as middle age, even if your brain is healthy.  As you get older, problems with memory tend to become more and more frequent.  Once you reach your mid 30s, you will most likely begin to notice an increased frequency of forgetfulness.  At this point, it may become common for you to lose your belongings and misplace your possessions, like your car keys or smartphones.  This can truly be frustrating at best.  At worst, it can be downright scary.  You might also start misplacing names and having more “tip of the tongue” moments.
Nothing happened until I was falling asleep, when I became distinctly aware that I was falling asleep. I monitored the entire process and remained lucid, with a measure of free will, as I dreamed, and woke up surprisingly refreshed. While I remembered many of my dreams, some of which were quite long, I couldn't recall how my underpants ended up around my ankles.

People charged with doing simple tasks did not exhibit much of an increase in brain function after taking Modafinil, but their performance on complex and difficult tasks after taking the drug was significantly better than those who were given a placebo. This suggests that it may affect “higher cognitive functions—mainly executive functions but also attention and learning,” explains study co-author Ruairidh Battleday.
Professor David O Kennedy published a book in 2014 called Plants and the Human Brain. In his book he summarizes the last 15 years of research into cognitive nutrition, including the work he's done with colleagues at the Brain Performance Nutrition Research Center at Northumbria University. It's a great read and a good guide to what sorts of herbs and other plants to include in our weekly diet and it is all based on hard science rather than mere assertion or trendy but unsubstantiated beliefs.
Caffeine (Examine.com; FDA adverse events) is of course the most famous stimulant around. But consuming 200mg or more a day, I have discovered the downside: it is addictive and has a nasty withdrawal - headaches, decreased motivation, apathy, and general unhappiness. (It’s a little amusing to read academic descriptions of caffeine addiction9; if caffeine were a new drug, I wonder what Schedule it would be in and if people might be even more leery of it than modafinil.) Further, in some ways, aside from the ubiquitous placebo effect, caffeine combines a mix of weak performance benefits (Lorist & Snel 2008, Nehlig 2010) with some possible decrements, anecdotally and scientifically:
…The Fate of Nicotine in the Body also describes Battelle’s animal work on nicotine absorption. Using C14-labeled nicotine in rabbits, the Battelle scientists compared gastric absorption with pulmonary absorption. Gastric absorption was slow, and first pass removal of nicotine by the liver (which transforms nicotine into inactive metabolites) was demonstrated following gastric administration, with consequently low systemic nicotine levels. In contrast, absorption from the lungs was rapid and led to widespread distribution. These results show that nicotine absorbed from the stomach is largely metabolized by the liver before it has a chance to get to the brain. That is why tobacco products have to be puffed, smoked or sucked on, or absorbed directly into the bloodstream (i.e., via a nicotine patch). A nicotine pill would not work because the nicotine would be inactivated before it reached the brain.

Some people are concerned that when they discontinue the use of nootropics, they will experience cognitive functioning below that of their normal level; however, this is usually not the case, especially regarding nootropics in the racetam class. Discontinuing nootropics will cause a person to lose any benefits experienced on these drugs. In other words, nootropics do not appear to build up the brain in any long-lasting way; their benefits are directly tied to their use. There is no evidence that nootropics erode one’s natural level of cognitive functioning.
My first time was relatively short: 10 minutes around the F3/F4 points, with another 5 minutes to the forehead. Awkward holding it up against one’s head, and I see why people talk of LED helmets, it’s boring waiting. No initial impressions except maybe feeling a bit mentally cloudy, but that goes away within 20 minutes of finishing when I took a nap outside in the sunlight. Lostfalco says Expectations: You will be tired after the first time for 2 to 24 hours. It’s perfectly normal., but I’m not sure - my dog woke me up very early and disturbed my sleep, so maybe that’s why I felt suddenly tired. On the second day, I escalated to 30 minutes on the forehead, and tried an hour on my finger joints. No particular observations except less tiredness than before and perhaps less joint ache. Third day: skipped forehead stimulation, exclusively knee & ankle. Fourth day: forehead at various spots for 30 minutes; tiredness 5/6/7/8th day (11/12/13/4): skipped. Ninth: forehead, 20 minutes. No noticeable effects.
Similar delicacies from around the world include Mexican tacos de sesos.[1] The Anyang tribe of Cameroon practiced a tradition in which a new tribal chief would consume the brain of a hunted gorilla, while another senior member of the tribe would eat the heart.[2] Indonesian cuisine specialty in Minangkabau cuisine also served beef brain in a coconut-milk gravy named gulai otak (beef brain curry).[3][4] In Cuban cuisine, "brain fritters" are made by coating pieces of brain with bread crumbs and then frying them.[5]
A protein source linked to a great brain boost is fish -- rich in omega-3 fatty acids that are key for brain health. These healthy fats have amazing brain power: A diet with higher levels of them has been linked to lower dementia and stroke risks and slower mental decline; plus, they may play a vital role in enhancing memory, especially as we get older.

At dose #9, I’ve decided to give up on kratom. It is possible that it is helping me in some way that careful testing (eg. dual n-back over weeks) would reveal, but I don’t have a strong belief that kratom would help me (I seem to benefit more from stimulants, and I’m not clear on how an opiate-bearer like kratom could stimulate me). So I have no reason to do careful testing. Oh well.
She speaks from professional and personal experience. When she first moved to the United States from Italy at age 24 she was struck by how shifting from the Mediterranean-style diet she grew up on to a standard American diet negatively impacted her physical health and work performance. The experience led her to more closely study nutrition and the link between diet and brain health. In this excerpt from a longer interview, she discusses the brain foods you should be eating.
Brain enhancing drug – the steroids of the mental world, these are compounds that can be both artificial or natural that are not recommended for casual consumption. If taken over a long period of time, they can and will result in permanent and debilitating damage, and if taken wrongly, they can and will result in injury, illness, and death. So far from being the best brain pill that they loop around and punch the actual best brain pill in the face.
One thing I did do was piggyback on my Noopept self-experiment: I blinded & randomized the Noopept for a real experiment, but simply made sure to vary the Magtein without worrying about blinding or randomizing it. (The powder is quite bulky.) The correlation the experiment turned in was a odds-ratio of 1.9; interesting and in the right direction (higher is better), but since the magnesium part wasn’t random or blind, not a causal result.
The amphetamine mix branded Adderall is terribly expensive to obtain even compared to modafinil, due to its tight regulation (a lower schedule than modafinil), popularity in college as a study drug, and reportedly moves by its manufacture to exploit its privileged position as a licensed amphetamine maker to extract more consumer surplus. I paid roughly $4 a pill but could have paid up to $10. Good stimulant hygiene involves recovery periods to avoid one’s body adapting to eliminate the stimulating effects, so even if Adderall was the answer to all my woes, I would not be using it more than 2 or 3 times a week. Assuming 50 uses a year (for specific projects, let’s say, and not ordinary aimless usage), that’s a cool $200 a year. My general belief was that Adderall would be too much of a stimulant for me, as I am amphetamine-naive and Adderall has a bad reputation for letting one waste time on unimportant things. We could say my prediction was 50% that Adderall would be useful and worth investigating further. The experiment was pretty simple: blind randomized pills, 10 placebo & 10 active. I took notes on how productive I was and the next day guessed whether it was placebo or Adderall before breaking the seal and finding out. I didn’t do any formal statistics for it, much less a power calculation, so let’s try to be conservative by penalizing the information quality heavily and assume it had 25%. So \frac{200 - 0}{\ln 1.05} \times 0.50 \times 0.25 = 512! The experiment probably used up no more than an hour or two total.
Jump up ^ Sattler, Sebastian; Forlini, Cynthia; Racine, Éric; Sauer, Carsten (August 5, 2013). "Impact of Contextual Factors and Substance Characteristics on Perspectives toward Cognitive Enhancement". PLOS ONE. PLOS. 8 (8): e71452. Bibcode:2013PLoSO...871452S. doi:10.1371/journal.pone.0071452. ISSN 1932-6203. LCCN 2006214532. OCLC 228234657. PMC 3733969. PMID 23940757. Retrieved April 5, 2014.
×