-Phosphatidylserine, which occurs naturally in high concentrations in the brain and has been shown to lower stress, cortisol and physical fatigue, improve attention-deficit and forgetfulness and increase mental processing and memory. Research indicates an effective dose of 100 mg three times daily, but anything over that may lead to adverse side effects like insomnia.
Discussions of PEA mention that it’s almost useless without a MAOI to pave the way; hence, when I decided to get deprenyl and noticed that deprenyl is a MAOI, I decided to also give PEA a second chance in conjunction with deprenyl. Unfortunately, in part due to my own shenanigans, Nubrain canceled the deprenyl order and so I have 20g of PEA sitting around. Well, it’ll keep until such time as I do get a MAOI.
As it happened, Health Supplement Wholesalers (since renamed Powder City) offered me a sample of their products, including their 5g Noopept powder ($13). I’d never used HSW before & they had some issues in the past; but I haven’t seen any recent complaints, so I was willing to try them. My 5g from batch #130830 arrived quickly (photos: packaging, powder contents). I tried some (tastes just slightly unpleasant, like an ultra-weak piracetam), and I set about capping the fluffy white flour-like powder with the hilariously tiny scoop they provide.
Methylfolate and methyl B12 work together to control methylation reactions that repair your DNA and regenerate brain cells.[11] The methylated forms are particularly important brain food — you have about three times as much methylfolate in your cerebrospinal fluid (the fluid around your brain and spine) as you do in your blood,[12] where it’s working tirelessly to maintain your nerve connections and repair DNA mutations.[13] Folate and B12 are particularly important for brain anti-aging.[14]

Similarly, we could try applying Nick Bostrom’s reversal test and ask ourselves, how would we react to a virus which had no effect but to eliminate sleep from alternating nights and double sleep in the intervening nights? We would probably grouch about it for a while and then adapt to our new hedonistic lifestyle of partying or working hard. On the other hand, imagine the virus had the effect of eliminating normal sleep but instead, every 2 minutes, a person would fall asleep for a minute. This would be disastrous! Besides the most immediate problems like safely driving vehicles, how would anything get done? You would hold a meeting and at any point, a third of the participants would be asleep. If the virus made it instead 2 hours on, one hour off, that would be better but still problematic: there would be constant interruptions. And so on, until we reach our present state of 16 hours on, 8 hours off. Given that we rejected all the earlier buffer sizes, one wonders if 16:8 can be defended as uniquely suited to circumstances. Is that optimal? It may be, given the synchronization with the night-day cycle, but I wonder; rush hour alone stands as an argument against synchronized sleep - wouldn’t our infrastructure would be much cheaper if it only had to handle the average daily load rather than cope with the projected peak loads? Might not a longer cycle be better? The longer the day, the less we are interrupted by sleep; it’s a hoary cliche about programmers that they prefer to work in long sustained marathons during long nights rather than sprint occasionally during a distraction-filled day, to the point where some famously adopt a 28 hour day (which evenly divides a week into 6 days). Are there other occupations which would benefit from a 20 hour waking period? Or 24 hour waking period? We might not know because without chemical assistance, circadian rhythms would overpower anyone attempting such schedules. It certainly would be nice if one had long time chunks in which could read a challenging book in one sitting, without heroic arrangements.↩


Began double-blind trial. Today I took one pill blindly at 1:53 PM. at the end of the day when I have written down my impressions and guess whether it was one of the Adderall pills, then I can look in the baggy and count and see whether it was. there are many other procedures one can take to blind oneself (have an accomplice mix up a sequence of pills and record what the sequence was; don’t count & see but blindly take a photograph of the pill each day, etc.) Around 3, I begin to wonder whether it was Adderall because I am arguing more than usual on IRC and my heart rate seems a bit high just sitting down. 6 PM: I’ve started to think it was a placebo. My heart rate is back to normal, I am having difficulty concentrating on long text, and my appetite has shown up for dinner (although I didn’t have lunch, I don’t think I had lunch yesterday and yesterday the hunger didn’t show up until past 7). Productivity wise, it has been a normal day. All in all, I’m not too sure, but I think I’d guess it was Adderall with 40% confidence (another way of saying placebo with 60% confidence). When I go to examine the baggie at 8:20 PM, I find out… it was an Adderall pill after all. Oh dear. One little strike against Adderall that I guessed wrong. It may be that the problem is that I am intrinsically a little worse today (normal variation? come down from Adderall?).
It can easily pass through the blood-brain barrier, and is known to protect the nerve tissues present in the brain. There is evidence that the acid plays an instrumental role in preventing strokes in adults by decreasing the number of free radicals in the body.  It increases the production of acetylcholine , a neurotransmitter that most Alzheimer’s patients are deficit in.
Last April the scientific journal Nature published the results of an informal online poll asking whether readers attempted to sharpen "their focus, concentration, or memory" by taking drugs such as Ritalin and Provigil, a newer kind of stimulant, known generically as modafinil, which was developed to treat narcolepsy. One in five respondents said they did. A majority of the 1,400 readers who responded said that healthy adults should be permitted to take brain boosters for non-medical reasons, and 69% said that mild side-effects were an acceptable risk. Though a majority said that such drugs should not be made available to children who had no diagnosed medical condition, a third admitted that they would feel pressure to give "smart drugs" to their kids if they learned that other parents were doing so.
Your brain loves omega-3 fatty acids, which are thought to play an important role in cognitive function. According to the New York Times describing research in the journal Neurology, low levels of these unsaturated fats in the blood are linked with smaller brain volume and worse performance on certain tests of mental function. Omega-3s, which are found in salmon and other cold-water fish like tuna, may improve the retention of brain cells and also bolster the brainpower of younger adults. According to University of Pittsburgh research published last year, adults under age 25 who increased their omega-3 intake over six months improved their scores on tests measuring working memory.
Brain focus pills largely contain chemical components like L-theanine which is naturally found in green and black tea. It’s associated with enhancing alertness, cognition, relaxation, arousal, and reducing anxiety to a large extent.  Theanine is an amino and glutamic acid that has been proven to be a safe psychoactive substance. There are studies that suggest that this compound influences, the expression in the genes present in the brain which is responsible for aggression, fear and memory. This, in turn, helps in balancing the behavioural responses to stress and also helps in improving specific conditions, like Post Traumatic Stress Disorder (PTSD).
Burke says he definitely got the glow. “The first time I took it, I was working on a business plan. I had to juggle multiple contingencies in my head, and for some reason a tree with branches jumped into my head. I was able to place each contingency on a branch, retract and go back to the trunk, and in this visual way I was able to juggle more information.”
Tuesday: I went to bed at 1am, and first woke up at 6am, and I wrote down a dream; the lucid dreaming book I was reading advised that waking up in the morning and then going back for a short nap often causes lucid dreams, so I tried that - and wound up waking up at 10am with no dreams at all. Oops. I take a pill, but the whole day I don’t feel so hot, although my conversation and arguments seem as cogent as ever. I’m also having a terrible time focusing on any actual work. At 8 I take another; I’m behind on too many things, and it looks like I need an all-nighter to catch up. The dose is no good; at 11, I still feel like at 8, possibly worse, and I take another along with the choline+piracetam (which makes a total of 600mg for the day). Come 12:30, and I disconsolately note that I don’t seem any better, although I still seem to understand the IQ essays I am reading. I wonder if this is tolerance to modafinil, or perhaps sleep catching up to me? Possibly it’s just that I don’t remember what the quasi-light-headedness of modafinil felt like. I feel this sort of zombie-like state without change to 4am, so it must be doing something, when I give up and go to bed, getting up at 7:30 without too much trouble. Some N-backing at 9am gives me some low scores but also some pretty high scores (38/43/66/40/24/67/60/71/54 or ▂▂▆▂▁▆▅▇▄), which suggests I can perform normally if I concentrate. I take another pill and am fine the rest of the day, going to bed at 1am as usual.
1. Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T., & Nathan, P. J. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl), 156(4), 481-484. 2. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complementary and Alternative Medicine, 12(1), 70. doi:10.1186/1472-6882-12-703. Pase, M. P., Kean, J., Sarris, J., Neale, C., Scholey, A. B., & Stough, C. (2012). The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med, 18(7), 647-652. doi:10.1089/acm.2011.03674. Raghav, S., Singh, H., Dalal, P. K., Srivastava, J. S., & Asthana, O. P. (2006). Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry, 48(4), 238-242. doi:10.4103/0019-5545.315555. Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2013). Cognitive effects of two nutraceuticals Ginseng and Bacopa [...]: a review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75(3), 728-737. doi:10.1111/bcp.120026. Prynne, C. J., Thane, C. W., Prentice, A., & Wadsworth, M. E. (2005). Intake and sources of phylloquinone (vitamin K(1)) in 4-year-old British children: comparison between 1950 and the 1990s. Public Health Nutr, 8(2), 171-180.7. Ferland, G. (2012). Vitamin K and the nervous system: an overview of its actions. Adv Nutr, 3(2), 204-212. doi:10.3945/an.111.0017848. Zeidan, Y. H., & Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends in molecular medicine, 13(8), 327-336.9. Beulens, J. W., Bots, M. L., Atsma, F., Bartelink, M. L., Prokop, M., Geleijnse, J. M., . . . van der Schouw, Y. T. (2009). High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis, 203(2), 489-493. doi:10.1016/j.atherosclerosis.2008.07.01010. Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H., van der Meer, I. M., . . . Witteman, J. C. (2004). Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr, 134(11), 3100-3105.11. Theuwissen, E., Magdeleyns, E. J., Braam, L. A., Teunissen, K. J., Knapen, M. H., Binnekamp, I. A., . . . Vermeer, C. (2014). Vitamin K status in healthy volunteers. Food Funct, 5(2), 229-234. doi:10.1039/c3fo60464k12. Barros, M. P., Poppe, S. C., & Bondan, E. F. (2014). Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients, 6(3), 1293-1317.13. Pashkow, F. J., Watumull, D. G., & Campbell, C. L. (2008). Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 101(10a), 58d-68d. doi:10.1016/j.amjcard.2008.02.01014. Annweiler, C., Schott, A. M., Berrut, G., Chauvire, V., Le Gall, D., Inzitari, M., & Beauchet, O. (2010). Vitamin D and ageing: neurological issues. Neuropsychobiology, 62(3), 139-150. doi:10.1159/00031857015. Brown, J., Bianco, J. I., McGrath, J. J., & Eyles, D. W. (2003). 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett, 343(2), 139-143.16. Naveilhan, P., Neveu, I., Wion, D., & Brachet, P. (1996). 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 7(13), 2171-2175.17. Tangpricha, V., Pearce, E. N., Chen, T. C., & Holick, M. F. (2002). Vitamin D insufficiency among free-living healthy young adults. Am J Med, 112(8), 659-662.18. Annweiler, C., Allali, G., Allain, P., Bridenbaugh, S., Schott, A. M., Kressig, R. W., & Beauchet, O. (2009). Vitamin D and cognitive performance in adults: a systematic review. European Journal of Neurology, 16(10), 1083-1089. doi:10.1111/j.1468-1331.2009.02755.x19. Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., Richard-Devantoy, S., Duque, G., & Beauchet, O. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis, 37(1), 147-171. doi:10.3233/jad-13045220. Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., . . . Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology, 79(13), 1397-1405.21. Dean, A. J., Bellgrove, M. A., Hall, T., Phan, W. M. J., Eyles, D. W., Kvaskoff, D., & McGrath, J. J. (2011). Effects of Vitamin D Supplementation on Cognitive and Emotional Functioning in Young Adults – A Randomised Controlled Trial. PLoS One, 6(11), e25966. doi:10.1371/journal.pone.002596622. Etgen, T., Sander, D., Bickel, H., Sander, K., & Forstl, H. (2012). Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord, 33(5), 297-305. doi:10.1159/00033970223. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest, 35(11), 691-699. doi:10.1111/j.1365-2362.2005.01570.x24. Huhn, S., Masouleh, S. K., Stumvoll, M., Villringer, A., & Witte, A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Frontiers in aging neuroscience, 7.25. Bradbury, J. (2011). Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients, 3(5), 529-554. doi:10.3390/nu305052926. Einother, S. J., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl), 225(2), 251-274. doi:10.1007/s00213-012-2917-427. Johnson, L. C., Spinweber, C. L., & Gomez, S. A. (1990). Benzodiazepines and caffeine: effect on daytime sleepiness, performance, and mood. Psychopharmacology (Berl), 101(2), 160-167. 28. Smith, A., Kendrick, A., Maben, A., & Salmon, J. (1994). Effects of breakfast and caffeine on cognitive performance, mood and cardiovascular functioning. Appetite, 22(1), 39-55. doi:10.1006/appe.1994.100429. Smith, A. P., Kendrick, A. M., & Maben, A. L. (1992). Effects of breakfast and caffeine on performance and mood in the late morning and after lunch. Neuropsychobiology, 26(4), 198-204. doi:11892030. Smith, B. D., Davidson, R. A., & Green, R. L. (1993). Effects of caffeine and gender on physiology and performance: further tests of a biobehavioral model. Physiol Behav, 54(3), 415-422. 31. Warburton, D. M. (1995). Effects of caffeine on cognition and mood without caffeine abstinence. Psychopharmacology (Berl), 119(1), 66-70. 32. Wilhelmus, M. M., Hay, J. L., Zuiker, R. G., Okkerse, P., Perdrieu, C., Sauser, J., . . . Silber, B. Y. (2017). Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects. J Psychopharmacol, 31(2), 222-232. doi:10.1177/026988111666859333. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 51(1), 83-133. 34. Borzelleca, J. F., Peters, D., & Hall, W. (2006). A 13-week dietary toxicity and toxicokinetic study with l-theanine in rats. Food Chem Toxicol, 44(7), 1158-1166. doi:10.1016/j.fct.2006.03.01435. Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). L-Theanine reduces psychological and physiological stress responses. Biol Psychol, 74(1), 39-45. doi:10.1016/j.biopsycho.2006.06.00636. Tian, X., Sun, L., Gou, L., Ling, X., Feng, Y., Wang, L., . . . Liu, Y. (2013). Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res, 1503, 24-32. doi:10.1016/j.brainres.2013.01.04837. Unno, K., Fujitani, K., Takamori, N., Takabayashi, F., Maeda, K., Miyazaki, H., . . . Hoshino, M. (2011). Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice. Free Radic Res, 45(8), 966-974. doi:10.3109/10715762.2011.56686938. Unno, K., Tanida, N., Ishii, N., Yamamoto, H., Iguchi, K., Hoshino, M., . . . Yamada, H. (2013). Anti-stress effect of theanine on students during pharmacy practice: positive correlation among salivary alpha-amylase activity, trait anxiety and subjective stress. Pharmacol Biochem Behav, 111, 128-135. doi:10.1016/j.pbb.2013.09.00439. Dodd, F. L., Kennedy, D. O., Riby, L. M., & Haskell-Ramsay, C. F. (2015a). A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood. Psychopharmacology (Berl), 232(14), 2563-2576. doi:10.1007/s00213-015-3895-040. Rogers, P. J., Smith, J. E., Heatherley, S. V., & Pleydell-Pearce, C. W. (2008). Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology (Berl), 195(4), 569-577. doi:10.1007/s00213-007-0938-141. Foxe, J. J., Morie, K. P., Laud, P. J., Rowson, M. J., de Bruin, E. A., & Kelly, S. P. (2012). Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology, 62(7), 2320-2327. doi:10.1016/j.neuropharm.2012.01.02042. Giesbrecht, T., Rycroft, J. A., Rowson, M. J., & De Bruin, E. A. (2010). The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness. Nutr Neurosci, 13(6), 283-290. doi:10.1179/147683010x1261146076484043. Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol, 77(2), 113-122. doi:10.1016/j.biopsycho.2007.09.00844. Kahathuduwa, C. N., Dassanayake, T. L., Amarakoon, A. M., & Weerasinghe, V. S. (2016). Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr Neurosci. doi:10.1080/1028415x.2016.114484545. Owen, G. N., Parnell, H., De Bruin, E. A., & Rycroft, J. A. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutr Neurosci, 11(4), 193-198. doi:10.1179/147683008x30151346. Einother, S. J., Martens, V. E., Rycroft, J. A., & De Bruin, E. A. (2010). L-theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite, 54(2), 406-409. doi:10.1016/j.appet.2010.01.00347. Deijen, J. B., van der Beek, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology (Berl), 109(4), 489-496.48. Lewerin, C., Matousek, M., Steen, G., Johansson, B., Steen, B., & Nilsson-Ehle, H. (2005). Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr, 81(5), 1155-1162. 49. Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr, 132(6), 1345-1356. 50. Schneider, Z., & Stroinski, A. (1987). Comprehensive B12: chemistry, biochemistry, nutrition, ecology, medicine: Walter de Gruyter.51. Polich, J., & Gloria, R. (2001). Cognitive effects of a Ginkgo biloba/vinpocetine compound in normal adults: systematic assessment of perception, attention and memory. Hum Psychopharmacol, 16(5), 409-416. doi:10.1002/hup.30852. Subhan, Z., & Hindmarch, I. (1985). Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol, 28(5), 567-571. 53. Dollins, A. B., Krock, L. P., Storm, W. F., Wurtman, R. J., & Lieberman, H. R. (1995). L-tyrosine ameliorates some effects of lower body negative pressure stress. Physiol Behav, 57(2), 223-230. 54. Shurtleff, D., Thomas, J. R., Schrot, J., Kowalski, K., & Harford, R. (1994). Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol Biochem Behav, 47(4), 935-941. 55. Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., & Ford, I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev, 9(1), 41-50. 56. Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-Analysis: Melatonin for the Treatment of Primary Sleep Disorders. PLoS One, 8(5), e63773. doi:10.1371/journal.pone.006377357. Inagawa, K., Hiraoka, T., Kohda, T., Yamadera, W., & Takahashi, M. (2006). Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep and Biological Rhythms, 4(1), 75-77. doi:10.1111/j.1479-8425.2006.00193.x58. Bannai, M., Kawai, N., Ono, K., Nakahara, K., & Murakami, N. (2012). The Effects of Glycine on Subjective Daytime Performance in Partially Sleep-Restricted Healthy Volunteers. Front Neurol, 3, 61. doi:10.3389/fneur.2012.0006159. Yamadera, W., Inagawa, K., Chiba, S., Bannai, M., Takahashi, M., & Nakayama, K. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms, 5(2), 126-131. doi:10.1111/j.1479-8425.2007.00262.x60. Tuli, H. S., Kashyap, D., Sharma, A. K., & Sandhu, S. S. (2015). Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci, 135, 147-157. doi:10.1016/j.lfs.2015.06.00461. Herxheimer, A., & Petrie, K. J. (2002). Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev(2), Cd001520. doi:10.1002/14651858.cd00152062. Deng, X., Song, Y., Manson, J. E., Signorello, L. B., Zhang, S. M., Shrubsole, M. J., . . . Dai, Q. (2013). Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 11(1), 187. doi:10.1186/1741-7015-11-18763. Murck, H., & Steiger, A. (1998). Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men -- possible therapeutic implications. Psychopharmacology (Berl), 137(3), 247-252. 64. Nielsen, F. H., Johnson, L. K., & Zeng, H. (2010). Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res, 23(4), 158-168. doi:10.1684/mrh.2010.0220
Jump up ^ Greely, Henry; Sahakian, Barbara; Harris, John; Kessler, Ronald C.; Gazzaniga, Michael; Campbell, Philip; Farah, Martha J. (December 10, 2008). "Towards responsible use of cognitive-enhancing drugs by the healthy". Nature. Nature Publishing Group. 456 (7223): 702–705. Bibcode:2008Natur.456..702G. doi:10.1038/456702a. ISSN 1476-4687. OCLC 01586310. PMID 19060880. Retrieved March 25, 2014. (Subscription required (help)).
×