Get plenty of sleep.  It can be a real challenge to get seven to nine hours of restful sleep each night with a busy fulltime work schedule, but rest is essential to optimum brain functioning!  A healthy nootropic pill can help to clear up brain fog and sharpen your concentration, but it cannot work miracles.  If you are trying to power through on four to five hours of sleep each night, nothing is going to cut it.
Following up on the promising but unrandomized pilot, I began randomizing my LLLT usage since I worried that more productive days were causing use rather than vice-versa. I began on 2 August 2014, and the last day was 3 March 2015 (n=167); this was twice the sample size I thought I needed, and I stopped, as before, as part of cleaning up (I wanted to know whether to get rid of it or not). The procedure was simple: by noon, I flipped a bit and either did or did not use my LED device; if I was distracted or didn’t get around to randomization by noon, I skipped the day. This was an unblinded experiment because finding a randomized on/off switch is tricky/expensive and it was easier to just start the experiment already. The question is simple too: controlling for the simultaneous blind magnesium experiment & my rare nicotine use (I did not use modafinil during this period or anything else I expect to have major influence), is the pilot correlation of d=0.455 on my daily self-ratings borne out by the experiment?
You would have heard this advice from top achievers in any field, “Work Smarter, not Harder.” Then why not extend the same philosophy in all areas of your life? Are you smarting from a situation wherein no matter how much you exercise, eat healthy, and sleep well, you still find it a struggle to focus and motivate yourself? If yes, you need smart help that is not hard on you. Try ‘Smart Drugs’, that could help you come out of your situation, by speeding up your thought process, boosting your memory, and making you more creative and productive.
People charged with doing simple tasks did not exhibit much of an increase in brain function after taking Modafinil, but their performance on complex and difficult tasks after taking the drug was significantly better than those who were given a placebo. This suggests that it may affect “higher cognitive functions—mainly executive functions but also attention and learning,” explains study co-author Ruairidh Battleday.
My worry about the MP variable is that, plausible or not, it does seem relatively weak against manipulation; other variables I could look at, like arbtt window-tracking of how I spend my computer time, # or size of edits to my files, or spaced repetition performance, would be harder to manipulate. If it’s all due to MP, then if I remove the MP and LLLT variables, and summarize all the other variables with factor analysis into 2 or 3 variables, then I should see no increases in them when I put LLLT back in and look for a correlation between the factors & LLLT with a multivariate regression.
Can brain enhancing pills actually improve memory? This is a common question and the answer varies, depending on the product you are considering. The top 25 brain enhancement supplements appear to produce results for many users. Research and scientific studies have demonstrated the brain boosting effects of nootropic ingredients in the best quality supplements. At Smart Pill Guide, you can read nootropics reviews and discover how to improve memory for better performance in school or at work.
While too much alcohol can certainly destroy healthy brain tissue, drinking in moderation may be good for your mind. A study published earlier this year in the Journal of Biological Chemistry found that the antioxidant EGCG—found in red wine and green tea—helped stop beta-amyloid proteins from harming brain cells in the lab. Additionally, research from UCLA found that wine’s antioxidants may block proteins that build brain-destroying plaques. In other recent news, British researchers discovered that rats improved spatial memory when they consumed what would be the equivalent of a daily glass of champagne; certain antioxidants in the bubbly may encourage growth of and better communication among nerve cells.

Some work has been done on estimating the value of IQ, both as net benefits to the possessor (including all zero-sum or negative-sum aspects) and as net positive externalities to the rest of society. The estimates are substantial: in the thousands of dollars per IQ point. But since increasing IQ post-childhood is almost impossible barring disease or similar deficits, and even increasing childhood IQs is very challenging, much of these estimates are merely correlations or regressions, and the experimental childhood estimates must be weakened considerably for any adult - since so much time and so many opportunities have been lost. A wild guess: $1000 net present value per IQ point. The range for severely deficient children was 10-15 points, so any normal (somewhat deficient) adult gain must be much smaller and consistent with Fitzgerald 2012’s ceiling on possible effect sizes (small).
Choline is very important for cognitive function because it is a precursor to Acteylcholine. Your body needs enough choline to convert into Acteylcholine to keep your brain healthy. For this reason, choline supplements are often considered great nootropics, even by themselves. CDP-Choline and Alpha GPC are the best sources for supplemental Choline.

The reviews on this site are a demonstration of what someone who uses the advertised products may experience. Results and experience may vary from user to user. All recommendations on this site are based solely on opinion. These products are not for use by children under the age of 18 and women who are pregnant or nursing. If you are under the care of a physician, have a known medical condition or are taking prescription medication, seek medical advice from your health care provider before taking any new supplements. All product reviews and user testimonials on this page are for reference and educational purposes only. You must draw your own conclusions as to the efficacy of any nutrient. Consumer Advisor Online makes no guarantee or representations as to the quality of any of the products represented on this website. The information on this page, while accurate at the time of publishing, may be subject to change or alterations. All logos and trademarks used in this site are owned by the trademark holders and respective companies.
Nootropics include natural and manmade chemicals that produce cognitive benefits. These substances are used to make smart pills that deliver results for enhancing memory and learning ability, improving brain function, enhancing the firing control mechanisms in neurons, and providing protection for the brain. College students, adult professionals, and elderly people are turning to supplements to get the advantages of nootropic substances for memory, focus, and concentration.
1. Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T., & Nathan, P. J. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl), 156(4), 481-484. 2. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complementary and Alternative Medicine, 12(1), 70. doi:10.1186/1472-6882-12-703. Pase, M. P., Kean, J., Sarris, J., Neale, C., Scholey, A. B., & Stough, C. (2012). The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med, 18(7), 647-652. doi:10.1089/acm.2011.03674. Raghav, S., Singh, H., Dalal, P. K., Srivastava, J. S., & Asthana, O. P. (2006). Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry, 48(4), 238-242. doi:10.4103/0019-5545.315555. Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2013). Cognitive effects of two nutraceuticals Ginseng and Bacopa [...]: a review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75(3), 728-737. doi:10.1111/bcp.120026. Prynne, C. J., Thane, C. W., Prentice, A., & Wadsworth, M. E. (2005). Intake and sources of phylloquinone (vitamin K(1)) in 4-year-old British children: comparison between 1950 and the 1990s. Public Health Nutr, 8(2), 171-180.7. Ferland, G. (2012). Vitamin K and the nervous system: an overview of its actions. Adv Nutr, 3(2), 204-212. doi:10.3945/an.111.0017848. Zeidan, Y. H., & Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends in molecular medicine, 13(8), 327-336.9. Beulens, J. W., Bots, M. L., Atsma, F., Bartelink, M. L., Prokop, M., Geleijnse, J. M., . . . van der Schouw, Y. T. (2009). High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis, 203(2), 489-493. doi:10.1016/j.atherosclerosis.2008.07.01010. Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H., van der Meer, I. M., . . . Witteman, J. C. (2004). Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr, 134(11), 3100-3105.11. Theuwissen, E., Magdeleyns, E. J., Braam, L. A., Teunissen, K. J., Knapen, M. H., Binnekamp, I. A., . . . Vermeer, C. (2014). Vitamin K status in healthy volunteers. Food Funct, 5(2), 229-234. doi:10.1039/c3fo60464k12. Barros, M. P., Poppe, S. C., & Bondan, E. F. (2014). Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients, 6(3), 1293-1317.13. Pashkow, F. J., Watumull, D. G., & Campbell, C. L. (2008). Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 101(10a), 58d-68d. doi:10.1016/j.amjcard.2008.02.01014. Annweiler, C., Schott, A. M., Berrut, G., Chauvire, V., Le Gall, D., Inzitari, M., & Beauchet, O. (2010). Vitamin D and ageing: neurological issues. Neuropsychobiology, 62(3), 139-150. doi:10.1159/00031857015. Brown, J., Bianco, J. I., McGrath, J. J., & Eyles, D. W. (2003). 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett, 343(2), 139-143.16. Naveilhan, P., Neveu, I., Wion, D., & Brachet, P. (1996). 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 7(13), 2171-2175.17. Tangpricha, V., Pearce, E. N., Chen, T. C., & Holick, M. F. (2002). Vitamin D insufficiency among free-living healthy young adults. Am J Med, 112(8), 659-662.18. Annweiler, C., Allali, G., Allain, P., Bridenbaugh, S., Schott, A. M., Kressig, R. W., & Beauchet, O. (2009). Vitamin D and cognitive performance in adults: a systematic review. European Journal of Neurology, 16(10), 1083-1089. doi:10.1111/j.1468-1331.2009.02755.x19. Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., Richard-Devantoy, S., Duque, G., & Beauchet, O. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis, 37(1), 147-171. doi:10.3233/jad-13045220. Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., . . . Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology, 79(13), 1397-1405.21. Dean, A. J., Bellgrove, M. A., Hall, T., Phan, W. M. J., Eyles, D. W., Kvaskoff, D., & McGrath, J. J. (2011). Effects of Vitamin D Supplementation on Cognitive and Emotional Functioning in Young Adults – A Randomised Controlled Trial. PLoS One, 6(11), e25966. doi:10.1371/journal.pone.002596622. Etgen, T., Sander, D., Bickel, H., Sander, K., & Forstl, H. (2012). Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord, 33(5), 297-305. doi:10.1159/00033970223. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest, 35(11), 691-699. doi:10.1111/j.1365-2362.2005.01570.x24. Huhn, S., Masouleh, S. K., Stumvoll, M., Villringer, A., & Witte, A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Frontiers in aging neuroscience, 7.25. Bradbury, J. (2011). Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients, 3(5), 529-554. doi:10.3390/nu305052926. Einother, S. J., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl), 225(2), 251-274. doi:10.1007/s00213-012-2917-427. Johnson, L. C., Spinweber, C. L., & Gomez, S. A. (1990). Benzodiazepines and caffeine: effect on daytime sleepiness, performance, and mood. Psychopharmacology (Berl), 101(2), 160-167. 28. Smith, A., Kendrick, A., Maben, A., & Salmon, J. (1994). Effects of breakfast and caffeine on cognitive performance, mood and cardiovascular functioning. Appetite, 22(1), 39-55. doi:10.1006/appe.1994.100429. Smith, A. P., Kendrick, A. M., & Maben, A. L. (1992). Effects of breakfast and caffeine on performance and mood in the late morning and after lunch. Neuropsychobiology, 26(4), 198-204. doi:11892030. Smith, B. D., Davidson, R. A., & Green, R. L. (1993). Effects of caffeine and gender on physiology and performance: further tests of a biobehavioral model. Physiol Behav, 54(3), 415-422. 31. Warburton, D. M. (1995). Effects of caffeine on cognition and mood without caffeine abstinence. Psychopharmacology (Berl), 119(1), 66-70. 32. Wilhelmus, M. M., Hay, J. L., Zuiker, R. G., Okkerse, P., Perdrieu, C., Sauser, J., . . . Silber, B. Y. (2017). Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects. J Psychopharmacol, 31(2), 222-232. doi:10.1177/026988111666859333. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 51(1), 83-133. 34. Borzelleca, J. F., Peters, D., & Hall, W. (2006). A 13-week dietary toxicity and toxicokinetic study with l-theanine in rats. Food Chem Toxicol, 44(7), 1158-1166. doi:10.1016/j.fct.2006.03.01435. Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). L-Theanine reduces psychological and physiological stress responses. Biol Psychol, 74(1), 39-45. doi:10.1016/j.biopsycho.2006.06.00636. Tian, X., Sun, L., Gou, L., Ling, X., Feng, Y., Wang, L., . . . Liu, Y. (2013). Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res, 1503, 24-32. doi:10.1016/j.brainres.2013.01.04837. Unno, K., Fujitani, K., Takamori, N., Takabayashi, F., Maeda, K., Miyazaki, H., . . . Hoshino, M. (2011). Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice. Free Radic Res, 45(8), 966-974. doi:10.3109/10715762.2011.56686938. Unno, K., Tanida, N., Ishii, N., Yamamoto, H., Iguchi, K., Hoshino, M., . . . Yamada, H. (2013). Anti-stress effect of theanine on students during pharmacy practice: positive correlation among salivary alpha-amylase activity, trait anxiety and subjective stress. Pharmacol Biochem Behav, 111, 128-135. doi:10.1016/j.pbb.2013.09.00439. Dodd, F. L., Kennedy, D. O., Riby, L. M., & Haskell-Ramsay, C. F. (2015a). A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood. Psychopharmacology (Berl), 232(14), 2563-2576. doi:10.1007/s00213-015-3895-040. Rogers, P. J., Smith, J. E., Heatherley, S. V., & Pleydell-Pearce, C. W. (2008). Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology (Berl), 195(4), 569-577. doi:10.1007/s00213-007-0938-141. Foxe, J. J., Morie, K. P., Laud, P. J., Rowson, M. J., de Bruin, E. A., & Kelly, S. P. (2012). Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology, 62(7), 2320-2327. doi:10.1016/j.neuropharm.2012.01.02042. Giesbrecht, T., Rycroft, J. A., Rowson, M. J., & De Bruin, E. A. (2010). The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness. Nutr Neurosci, 13(6), 283-290. doi:10.1179/147683010x1261146076484043. Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol, 77(2), 113-122. doi:10.1016/j.biopsycho.2007.09.00844. Kahathuduwa, C. N., Dassanayake, T. L., Amarakoon, A. M., & Weerasinghe, V. S. (2016). Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr Neurosci. doi:10.1080/1028415x.2016.114484545. Owen, G. N., Parnell, H., De Bruin, E. A., & Rycroft, J. A. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutr Neurosci, 11(4), 193-198. doi:10.1179/147683008x30151346. Einother, S. J., Martens, V. E., Rycroft, J. A., & De Bruin, E. A. (2010). L-theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite, 54(2), 406-409. doi:10.1016/j.appet.2010.01.00347. Deijen, J. B., van der Beek, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology (Berl), 109(4), 489-496.48. Lewerin, C., Matousek, M., Steen, G., Johansson, B., Steen, B., & Nilsson-Ehle, H. (2005). Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr, 81(5), 1155-1162. 49. Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr, 132(6), 1345-1356. 50. Schneider, Z., & Stroinski, A. (1987). Comprehensive B12: chemistry, biochemistry, nutrition, ecology, medicine: Walter de Gruyter.51. Polich, J., & Gloria, R. (2001). Cognitive effects of a Ginkgo biloba/vinpocetine compound in normal adults: systematic assessment of perception, attention and memory. Hum Psychopharmacol, 16(5), 409-416. doi:10.1002/hup.30852. Subhan, Z., & Hindmarch, I. (1985). Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol, 28(5), 567-571. 53. Dollins, A. B., Krock, L. P., Storm, W. F., Wurtman, R. J., & Lieberman, H. R. (1995). L-tyrosine ameliorates some effects of lower body negative pressure stress. Physiol Behav, 57(2), 223-230. 54. Shurtleff, D., Thomas, J. R., Schrot, J., Kowalski, K., & Harford, R. (1994). Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol Biochem Behav, 47(4), 935-941. 55. Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., & Ford, I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev, 9(1), 41-50. 56. Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-Analysis: Melatonin for the Treatment of Primary Sleep Disorders. PLoS One, 8(5), e63773. doi:10.1371/journal.pone.006377357. Inagawa, K., Hiraoka, T., Kohda, T., Yamadera, W., & Takahashi, M. (2006). Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep and Biological Rhythms, 4(1), 75-77. doi:10.1111/j.1479-8425.2006.00193.x58. Bannai, M., Kawai, N., Ono, K., Nakahara, K., & Murakami, N. (2012). The Effects of Glycine on Subjective Daytime Performance in Partially Sleep-Restricted Healthy Volunteers. Front Neurol, 3, 61. doi:10.3389/fneur.2012.0006159. Yamadera, W., Inagawa, K., Chiba, S., Bannai, M., Takahashi, M., & Nakayama, K. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms, 5(2), 126-131. doi:10.1111/j.1479-8425.2007.00262.x60. Tuli, H. S., Kashyap, D., Sharma, A. K., & Sandhu, S. S. (2015). Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci, 135, 147-157. doi:10.1016/j.lfs.2015.06.00461. Herxheimer, A., & Petrie, K. J. (2002). Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev(2), Cd001520. doi:10.1002/14651858.cd00152062. Deng, X., Song, Y., Manson, J. E., Signorello, L. B., Zhang, S. M., Shrubsole, M. J., . . . Dai, Q. (2013). Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 11(1), 187. doi:10.1186/1741-7015-11-18763. Murck, H., & Steiger, A. (1998). Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men -- possible therapeutic implications. Psychopharmacology (Berl), 137(3), 247-252. 64. Nielsen, F. H., Johnson, L. K., & Zeng, H. (2010). Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res, 23(4), 158-168. doi:10.1684/mrh.2010.0220

Legal Disclaimer Do Not exceed recommended dose for Colon Clean. Pregnant or nursing mothers, children under 18, and individuals with a known medical condition should consult a physician before using this or any dietary supplement. Be careful when using supplements with other supplements or prescription pharmaceuticals. This product is not intended to diagnose, treat, cure, or prevent any disease.
For more in-depth personalised support, some people find nutritional therapy hugely beneficial. To find a suitable therapist, please head to BANT (British Association of Applied Nutrition and Nutritional Therapy) or contact our not-for-profit clinic, the Brain Bio Centre (www.brainbiocentre.com), which offers expertise in nutritional therapy for mental health conditions including depression, on 0208 332 9600 or info@brainbiocentre.com. If you feel you need more immediate help, for whatever it is that you’re going through, theSamaritans helpline offer support 24 hours a day, 365 days a year and can point you in the right direction of getting further help.

Increase your memory, alertness, energy and focus with the most revolutionary “limitless” pill ever created. As we age, our brains start to slow down both in reaction time and in the recalling of memories. That’s why we need to not only regain our mental capacity, we need to enhance it to such heights that we go well beyond where we started. When you use the dietary supplement Addium, you can total replenish and revitalize your mental alertness in a safe, all-natural way. Made of some of the most powerful brain enhancing ingredients on the market, Addium can be used each day to increase memory function, enhance brain power, increase physical energy and stay sharper and more focused. Don’t just settle for feeling like everyone else; it’s time to take your mind to a limitless state of mental preparedness. Addium Brain Enhancing Dietary Supplement also contains the following benefits: • Boosts your capacity for learning • Increases your alertness and focus • Safe and all natural • Promotes strong brain function • Enhances memory and performance Addium contains: Vitamin B6 - An economical source for cardio health and energy metabolism. Addium contains a Proprietary Blend of: Acetyl L-Carnitine - Energizes the mind and promotes concentration. L-Theanine - Enhances endocrine function, stimulating some brain waves and leaving others unaffected. Caffeine - Increase mental alertness. Rhodiola Rosea Extract - Fights the physical and mental effects of stress. Bacopa Monnieri Extract – This ingredient increases cerebral blood flow and cognitive function at the same time.
With subtle effects, we need a lot of data, so we want at least half a year (6 blocks) or better yet, a year (12 blocks); this requires 180 actives and 180 placebos. This is easily covered by $11 for Doctor’s Best Best Lithium Orotate (5mg), 200-Count (more precisely, Lithium 5mg (from 125mg of lithium orotate)) and $14 for 1000x1g empty capsules (purchased February 2012). For convenience I settled on 168 lithium & 168 placebos (7 pill-machine batches, 14 batches total); I can use them in 24 paired blocks of 7-days/1-week each (48 total blocks/48 weeks). The lithium expiration date is October 2014, so that is not a problem
(If I am not deficient, then supplementation ought to have no effect.) The previous material on modern trends suggests a prior >25%, and higher than that if I were female. However, I was raised on a low-salt diet because my father has high blood pressure, and while I like seafood, I doubt I eat it more often than weekly. I suspect I am somewhat iodine-deficient, although I don’t believe as confidently as I did that I had a vitamin D deficiency. Let’s call this one 75%.
And yet when enthusiasts share their vision of our neuroenhanced future it can sound dystopian. Zack Lynch, of NeuroInsights, gave me a rationale for smart pills that I found particularly grim. "If you're a 55-year-old in Boston, you have to compete with a 26-year-old from Mumbai now, and those kinds of pressures are only going to grow," he began. Countries other than the US might tend to be a little looser with their regulations and offer approval of new cognitive enhancers first. "And if you're a company that's got 47 offices worldwide, and all of a sudden your Singapore office is using cognitive enablers, and you're saying to Congress: 'I'm moving all my financial operations to Singapore and Taiwan, because it's legal to use those there', you bet that Congress is going to say: 'Well, OK.' It will be a moot question then.
It doesn't take a neuroscientist with a degree in nutrition to get that diet can affect the brain. It does take a neuroscientist with a degree in nutrition to provide such a smart research-driven analysis of how and to what extent. Brain Food is based on the work of literally hundreds of scientists and provides a dietary roadmap to enhanced cognitive power. That Dr. Mosconi's book is also fully accessible to a layperson makes this a true must read. (Bonus: Chapter 16 is a mini-cookbook with "brain boosting" recipes including several that are kid-friendly.)
This continued up to 1 AM, at which point I decided not to take a second armodafinil (why spend a second pill to gain what would likely be an unproductive set of 8 hours?) and finish up the experiment with some n-backing. My 5 rounds: 60/38/62/44/5024. This was surprising. Compare those scores with scores from several previous days: 39/42/44/40/20/28/36. I had estimated before the n-backing that my scores would be in the low-end of my usual performance (20-30%) since I had not slept for the past 41 hours, and instead, the lowest score was 38%. If one did not know the context, one might think I had discovered a good nootropic! Interesting evidence that armodafinil preserves at least one kind of mental performance.
This is the same fallacious argument made for superfoods. The same levels of dietary nutrients can be supplied by eating more of other foods. Caviar contains more omega-3s than salmon, but the typical serving of caviar is much smaller than the typical serving of salmon. And it’s possible to get plenty of omega-3s in a varied diet without eating either one.
For illustration, consider amphetamines, Ritalin, and modafinil, all of which have been proposed as cognitive enhancers of attention. These drugs exhibit some positive effects on cognition, especially among individuals with lower baseline abilities. However, individuals of normal or above-average cognitive ability often show negligible improvements or even decrements in performance following drug treatment (for details, see de Jongh, Bolt, Schermer, & Olivier, 2008). For instance, Randall, Shneerson, and File (2005) found that modafinil improved performance only among individuals with lower IQ, not among those with higher IQ. [See also Finke et al 2010 on visual attention.] Farah, Haimm, Sankoorikal, & Chatterjee 2009 found a similar nonlinear relationship of dose to response for amphetamines in a remote-associates task, with low-performing individuals showing enhanced performance but high-performing individuals showing reduced performance. Such ∩-shaped dose-response curves are quite common (see Cools & Robbins, 2004)
Your mileage will vary. There are so many parameters and interactions in the brain that any of them could be the bottleneck or responsible pathway, and one could fall prey to the common U-shaped dose-response curve (eg. Yerkes-Dodson law; see also Chemistry of the adaptive mind & de Jongh et al 2007) which may imply that the smartest are those who benefit least23 but ultimately they all cash out in a very few subjective assessments like energetic or motivated, with even apparently precise descriptions like working memory or verbal fluency not telling you much about what the nootropic actually did. It’s tempting to list the nootropics that worked for you and tell everyone to go use them, but that is merely generalizing from one example (and the more nootropics - or meditation styles, or self-help books, or getting things done systems - you try, the stronger the temptation is to evangelize). The best you can do is read all the testimonials and studies and use that to prioritize your list of nootropics to try. You don’t know in advance which ones will pay off and which will be wasted. You can’t know in advance. And wasted some must be; to coin a Umeshism: if all your experiments work, you’re just fooling yourself. (And the corollary - if someone else’s experiments always work, they’re not telling you everything.)
But notice that most of the cost imbalance is coming from the estimate of the benefit of IQ - if it quadrupled to a defensible $8000, that would be close to the experiment cost! So in a way, what this VoI calculation tells us is that what is most valuable right now is not that iodine might possibly increase IQ, but getting a better grip on how much any IQ intervention is worth.
I do recommend a few things, like modafinil or melatonin, to many adults, albeit with misgivings about any attempt to generalize like that. (It’s also often a good idea to get powders, see the appendix.) Some of those people are helped; some have told me that they tried and the suggestion did little or nothing. I view nootropics as akin to a biological lottery; one good discovery pays for all. I forge on in the hopes of further striking gold in my particular biology. Your mileage will vary. All you have to do, all you can do is to just try it. Most of my experiences were in my 20s as a right-handed 5’11 white male weighing 190-220lbs, fitness varying over time from not-so-fit to fairly fit. In rough order of personal effectiveness weighted by costs+side-effects, I rank them as follows:

In my SkepDoc column in Skeptic magazine (text available online) I reviewed the video series “Awakening from Alzheimer’s,” in which a journalist interviews numerous “experts” and claims that Alzheimer’s is for the most part preventable and can be reversed in 9 out of 10 patients! The recommendations of those “experts” are all over the map. There is nothing even remotely approaching a scientific consensus. They claim the main cause of Alzheimer’s is everything from gluten to obesity to lack of sleep to chronic Lyme disease to toxins spewed by “leaky gut” syndrome. They claim to have reversed Alzheimer’s with a wide variety of treatments: everything from coconut oil to a ketogenic diet to probiotics to strenuous exercise to various long lists of dietary supplements to psychological interventions that are considered successful if they make patients cry. There is no satisfactory evidence to support any of their claims.

An unusual intervention is infrared/near-infrared light of particular wavelengths (LLLT), theorized to assist mitochondrial respiration and yielding a variety of therapeutic benefits. Some have suggested it may have cognitive benefits. LLLT sounds strange but it’s simple, easy, cheap, and just plausible enough it might work. I tried out LLLT treatment on a sporadic basis 2013-2014, and statistically, usage correlated strongly & statistically-significantly with increases in my daily self-ratings, and not with any sleep disturbances. Excited by that result, I did a randomized self-experiment 2014-2015 with the same procedure, only to find that the causal effect was weak or non-existent. I have stopped using LLLT as likely not worth the inconvenience.

One fairly powerful nootropic substance that, appropriately, has fallen out of favor is nicotine. It’s the chemical that gives tobacco products their stimulating kick. It isn’t what makes them so deadly, but it does make smoking very addictive. When Europeans learned about tobacco’s use from indigenous tribes they encountered in the Americas in the 15th and 16th centuries, they got hooked on its mood-altering effects right away and even believed it could cure joint pain, epilepsy, and the plague. Recently, researchers have been testing the effects of nicotine that’s been removed from tobacco, and they believe that it might help treat neurological disorders including Parkinson’s disease and schizophrenia; it may also improve attention and focus. But, please, don’t start smoking or vaping. Check out these 14 weird brain exercises that make you smarter.


I largely ignored this since the discussions were of sub-RDA doses, and my experience has usually been that RDAs are a poor benchmark and frequently far too low (consider the RDA for vitamin D). This time, I checked the actual RDA - and was immediately shocked and sure I was looking at a bad reference: there was no way the RDA for potassium was seriously 3700-4700mg or 4-5 grams daily, was there? Just as an American, that implied that I was getting less than half my RDA. (How would I get 4g of potassium in the first place? Eat a dozen bananas a day⸮) I am not a vegetarian, nor is my diet that fantastic: I figured I was getting some potassium from the ~2 fresh tomatoes I was eating daily, but otherwise my diet was not rich in potassium sources. I have no blood tests demonstrating deficiency, but given the figures, I cannot see how I could not be deficient.
Vinpocetine: This chemical is a semi-synthetic derivative of an extract from periwinkle.  It acts as a potent anti-inflammatory agent, and has also received some testing as a supplement for memory enhancement.  While research results are inconclusive right now, this chemical has been shown to increase blood circulation and metabolism in the brain and may slow down neuron loss.  Some tests have also shown that it can improve concentration and attention.
Reason: Acetyl-L-carnitine can protect the brain from neurotoxicity. It can also ward off oxygen deprivation. Acetyl-L-carnitine can even preserve cells energy-producing mitochondria. Plus, it can rejuvenate mental and physical function. Dosages for studies have been in the 1,500 – 4,000 mg range. These are divided into two or three doses. However, we recommend no more than 1,000 mg of acetyl-L-carnitine a day without medical supervision.
Often her language is not that of a scientist. She uses buzzwords like detoxification and boosting the immune system. She avoids GMOs and things that she thinks are unnatural like “manufactured” minerals and salts. She says she takes royal jelly daily for its natural antibiotic effects; she says these effects are “known, but perhaps not scientifically confirmed.” If not scientifically confirmed, how are the effects “known”? She says plants produce phytonutrients to increase their life span, and then she leaps to the conclusion that humans will derive the same benefits from eating the plants.
The team behind Brain Pill strongly believes in fair win-win scenarios. That’s why every customer has an opportunity to try this product for the full two months. There’s nothing to worry about during this period because you are covered by the no-questions-asked money-back guarantee. Some people begin experiencing the first obvious results in less than a month. On the other hand, some users require up to 60 days to see Brain Pill at work full scale. It’s an individual thing. If you aren’t absolutely thrilled by Brain Pill’s results after two months of use, you are free to ask for the full refund. It’s that simple and fair. In addition, you get an extra week after the initial period of 60 days expired to send back the bottles you haven’t used. You will either get all the benefits or get the full refund. So, this risk-free opportunity just can’t get any better, can it?
Interesting however, that there’s no mention of the power of cocoa (chocolate extract) or green tea. I’ve reviewed dozens of studies from Harvard Science as well as internation publications that discuss cocoa in particular. We already know the value of antioxidants in green tea but chocolate seems to be up and coming. I’ve been taking a product called vavalert that combines cocoa and green tea and it’s been working like a miracle.
The power calculation indicates a 20% chance of getting useful information. My quasi-experiment has <70% chance of being right, and I preserve a general skepticism about any experiment, even one as well done as the medical student one seems to be, and give that one a <80% chance of being right; so let’s call it 70% the effect exists, or 30% it doesn’t exist (which is the case in which I save money by dropping fish oil for 10 years).
This continued up to 1 AM, at which point I decided not to take a second armodafinil (why spend a second pill to gain what would likely be an unproductive set of 8 hours?) and finish up the experiment with some n-backing. My 5 rounds: 60/38/62/44/5024. This was surprising. Compare those scores with scores from several previous days: 39/42/44/40/20/28/36. I had estimated before the n-backing that my scores would be in the low-end of my usual performance (20-30%) since I had not slept for the past 41 hours, and instead, the lowest score was 38%. If one did not know the context, one might think I had discovered a good nootropic! Interesting evidence that armodafinil preserves at least one kind of mental performance.
In this large population-based cohort, we saw consistent robust associations between cola consumption and low BMD in women. The consistency of pattern across cola types and after adjustment for potential confounding variables, including calcium intake, supports the likelihood that this is not due to displacement of milk or other healthy beverages in the diet. The major differences between cola and other carbonated beverages are caffeine, phosphoric acid, and cola extract. Although caffeine likely contributes to lower BMD, the result also observed for decaffeinated cola, the lack of difference in total caffeine intake across cola intake groups, and the lack of attenuation after adjustment for caffeine content suggest that caffeine does not explain these results. A deleterious effect of phosphoric acid has been proposed (26). Cola beverages contain phosphoric acid, whereas other carbonated soft drinks (with some exceptions) do not.
(If I am not deficient, then supplementation ought to have no effect.) The previous material on modern trends suggests a prior >25%, and higher than that if I were female. However, I was raised on a low-salt diet because my father has high blood pressure, and while I like seafood, I doubt I eat it more often than weekly. I suspect I am somewhat iodine-deficient, although I don’t believe as confidently as I did that I had a vitamin D deficiency. Let’s call this one 75%.

28,61,36,25,61,57,39,56,23,37,24,50,54,32,50,33,16,42,41,40,34,33,31,65,23,36,29,51,46,31,45,52,30, 50,29,36,57,60,34,48,32,41,48,34,51,40,53,73,56,53,53,57,46,50,35,50,60,62,30,60,48,46,52,60,60,48, 47,34,50,51,45,54,70,48,61,43,53,60,44,57,50,50,52,37,55,40,53,48,50,52,44,50,50,38,43,66,40,24,67, 60,71,54,51,60,41,58,20,28,42,53,59,42,31,60,42,58,36,48,53,46,25,53,57,60,35,46,32,26,68,45,20,51, 56,48,25,62,50,54,47,42,55,39,60,44,32,50,34,60,47,70,68,38,47,48,70,51,42,41,35,36,39,23,50,46,44,56,50,39

One curious thing that leaps out looking at the graphs is that the estimated underlying standard deviations differ: the nicotine days have a strikingly large standard deviation, indicating greater variability in scores - both higher and lower, since the means weren’t very different. The difference in standard deviations is just 6.6% below 0, so the difference almost reaches our usual frequentist levels of confidence too, which we can verify by testing:

There are many more steps to help support the optimal functioning of the brain and therefore encourage improved learning and development. However, another key strategy to support brain health is to increase intake of omega 3, an essential fatty acid, that is most abundantly found in oily fish such as salmon, mackerel and sardines. Be sure to choose salmon that has had less exposure to polluted water - visit the Seafood Watch web page to find the best sources. Omega 3 is vital for the brain’s function, particularly one of its components called DHA. This is a key building block for the brain and is what keeps neurons (brain cells) working well and supports proper signalling via neurotransmitters.

Vitamin D is probably the most important supplement you can take, and one of the best brain food. It acts on more than over 1,000 different genes and is a substrate for testosterone, progesterone, estradiol, and other  hormones.[1] It also influences inflammation and brain calcium absorption.[2] No surprise that optimal vitamin D levels are linked to stronger cognitive function and slower brain aging.[3][4]
I tried taking whole pills at 1 and 3 AM. I felt kind of bushed at 9 AM after all the reading, and the 50 minute nap didn’t help much - I was sleep only around 10 minutes and spent most of it thinking or meditation. Just as well the 3D driver is still broken; I doubt the scores would be reasonable. Began to perk up again past 10 AM, then felt more bushed at 1 PM, and so on throughout the day; kind of gave up and began watching & finishing anime (Amagami and Voices of a Distant Star) for the rest of the day with occasional reading breaks (eg. to start James C. Scotts Seeing Like A State, which is as described so far). As expected from the low quality of the day, the recovery sleep was bigger than before: a full 10 hours rather than 9:40; the next day, I slept a normal 8:50, and the following day ~8:20 (woken up early); 10:20 (slept in); 8:44; 8:18 (▁▇▁▁). It will be interesting to see whether my excess sleep remains in the hour range for ’good modafinil nights and two hours for bad modafinil nights.
Effect of Brain Pill on working memory capacity will be accessed by improvement in mean response time and accuracy measured by working memory battery from baseline to end of the study. Effect of Brain Pill is also accessed on Neurophysiological improvement in working memory as measured by electroencephelogram (EEG) from baseline to end of the study. Also improvement in attention and concentration will be accessed from baseline to end of the study by Picture recognition test.
Back home, I contacted Aubrey Marcus, whose company Onnit Labs produces Alpha Brain. He attributed my lucid dreaming to increased levels of the neurotransmitter acetylcholine, which enhances REM dreaming. Alpha Brain has two ingredients that boost acetylcholine levels: GPC choline, which the body converts to acetylcholine, and Huperzine A, an alkaloid derived from Chinese club moss, also known as Huperzia serrata. "Huperzine A disarms the enzyme that naturally breaks down acetylcholine," Marcus said. "So while the GPC choline is being converted to acetylcholine, the Huperzine A is keeping it from disappearing. It's like plugging the drain and turning on the faucet."
Vinh Ngo, a San Francisco family practice doctor who specializes in hormone therapy, has become familiar with piracetam and other nootropics through a changing patient base. His office is located in the heart of the city’s tech boom and he is increasingly sought out by young, male tech workers who tell him they are interested in cognitive enhancement.
Microdosing with Iboga: Native to the rainforests in Central Africa, Iboga is an evergreen shrub, with high concentrations found in the root bark. It has a rich history amongst practitioners in the indigenous Bwiti religion in Africa and has recently found its way into Western practices, primarily for extremely effective therapy for drug addictions, but also for physical energy, cognitive performance in smaller microdoses, and a surge in positive emotions (See additional studies here and here.).  To microdose with Iboga, you will want to find it in tincture or root bark form (the root bark form is typically encapsulated). If using a tincture, find a source that has the root bark extracted into its purest form, combined with Iboga alkaloids, which keeps the full spectrum of the plant untouched. Just a single drop of an Iboga tincture equates to about 0.5 milligrams and suffices as a microdose. For the root bark of Iboga, a dose of 300-500 milligrams is also an effective dose. I’ve personally found Iboga to be most useful prior to a workout or an effort that combines both brain and body demands, such as tennis or basketball – but it makes you hyperactive and jittery if taken prior to a day of desk work. This makes sense when you consider that African tribes traditionally whipped themselves into a frenzied pre-battle state on Iboga.
1. Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T., & Nathan, P. J. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl), 156(4), 481-484. 2. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complementary and Alternative Medicine, 12(1), 70. doi:10.1186/1472-6882-12-703. Pase, M. P., Kean, J., Sarris, J., Neale, C., Scholey, A. B., & Stough, C. (2012). The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med, 18(7), 647-652. doi:10.1089/acm.2011.03674. Raghav, S., Singh, H., Dalal, P. K., Srivastava, J. S., & Asthana, O. P. (2006). Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry, 48(4), 238-242. doi:10.4103/0019-5545.315555. Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2013). Cognitive effects of two nutraceuticals Ginseng and Bacopa [...]: a review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75(3), 728-737. doi:10.1111/bcp.120026. Prynne, C. J., Thane, C. W., Prentice, A., & Wadsworth, M. E. (2005). Intake and sources of phylloquinone (vitamin K(1)) in 4-year-old British children: comparison between 1950 and the 1990s. Public Health Nutr, 8(2), 171-180.7. Ferland, G. (2012). Vitamin K and the nervous system: an overview of its actions. Adv Nutr, 3(2), 204-212. doi:10.3945/an.111.0017848. Zeidan, Y. H., & Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends in molecular medicine, 13(8), 327-336.9. Beulens, J. W., Bots, M. L., Atsma, F., Bartelink, M. L., Prokop, M., Geleijnse, J. M., . . . van der Schouw, Y. T. (2009). High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis, 203(2), 489-493. doi:10.1016/j.atherosclerosis.2008.07.01010. Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H., van der Meer, I. M., . . . Witteman, J. C. (2004). Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr, 134(11), 3100-3105.11. Theuwissen, E., Magdeleyns, E. J., Braam, L. A., Teunissen, K. J., Knapen, M. H., Binnekamp, I. A., . . . Vermeer, C. (2014). Vitamin K status in healthy volunteers. Food Funct, 5(2), 229-234. doi:10.1039/c3fo60464k12. Barros, M. P., Poppe, S. C., & Bondan, E. F. (2014). Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients, 6(3), 1293-1317.13. Pashkow, F. J., Watumull, D. G., & Campbell, C. L. (2008). Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 101(10a), 58d-68d. doi:10.1016/j.amjcard.2008.02.01014. Annweiler, C., Schott, A. M., Berrut, G., Chauvire, V., Le Gall, D., Inzitari, M., & Beauchet, O. (2010). Vitamin D and ageing: neurological issues. Neuropsychobiology, 62(3), 139-150. doi:10.1159/00031857015. Brown, J., Bianco, J. I., McGrath, J. J., & Eyles, D. W. (2003). 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett, 343(2), 139-143.16. Naveilhan, P., Neveu, I., Wion, D., & Brachet, P. (1996). 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 7(13), 2171-2175.17. Tangpricha, V., Pearce, E. N., Chen, T. C., & Holick, M. F. (2002). Vitamin D insufficiency among free-living healthy young adults. Am J Med, 112(8), 659-662.18. Annweiler, C., Allali, G., Allain, P., Bridenbaugh, S., Schott, A. M., Kressig, R. W., & Beauchet, O. (2009). Vitamin D and cognitive performance in adults: a systematic review. European Journal of Neurology, 16(10), 1083-1089. doi:10.1111/j.1468-1331.2009.02755.x19. Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., Richard-Devantoy, S., Duque, G., & Beauchet, O. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis, 37(1), 147-171. doi:10.3233/jad-13045220. Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., . . . Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology, 79(13), 1397-1405.21. Dean, A. J., Bellgrove, M. A., Hall, T., Phan, W. M. J., Eyles, D. W., Kvaskoff, D., & McGrath, J. J. (2011). Effects of Vitamin D Supplementation on Cognitive and Emotional Functioning in Young Adults – A Randomised Controlled Trial. PLoS One, 6(11), e25966. doi:10.1371/journal.pone.002596622. Etgen, T., Sander, D., Bickel, H., Sander, K., & Forstl, H. (2012). Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord, 33(5), 297-305. doi:10.1159/00033970223. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest, 35(11), 691-699. doi:10.1111/j.1365-2362.2005.01570.x24. Huhn, S., Masouleh, S. K., Stumvoll, M., Villringer, A., & Witte, A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Frontiers in aging neuroscience, 7.25. Bradbury, J. (2011). Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients, 3(5), 529-554. doi:10.3390/nu305052926. Einother, S. J., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl), 225(2), 251-274. doi:10.1007/s00213-012-2917-427. Johnson, L. C., Spinweber, C. L., & Gomez, S. A. (1990). Benzodiazepines and caffeine: effect on daytime sleepiness, performance, and mood. Psychopharmacology (Berl), 101(2), 160-167. 28. Smith, A., Kendrick, A., Maben, A., & Salmon, J. (1994). Effects of breakfast and caffeine on cognitive performance, mood and cardiovascular functioning. Appetite, 22(1), 39-55. doi:10.1006/appe.1994.100429. Smith, A. P., Kendrick, A. M., & Maben, A. L. (1992). Effects of breakfast and caffeine on performance and mood in the late morning and after lunch. Neuropsychobiology, 26(4), 198-204. doi:11892030. Smith, B. D., Davidson, R. A., & Green, R. L. (1993). Effects of caffeine and gender on physiology and performance: further tests of a biobehavioral model. Physiol Behav, 54(3), 415-422. 31. Warburton, D. M. (1995). Effects of caffeine on cognition and mood without caffeine abstinence. Psychopharmacology (Berl), 119(1), 66-70. 32. Wilhelmus, M. M., Hay, J. L., Zuiker, R. G., Okkerse, P., Perdrieu, C., Sauser, J., . . . Silber, B. Y. (2017). Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects. J Psychopharmacol, 31(2), 222-232. doi:10.1177/026988111666859333. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 51(1), 83-133. 34. Borzelleca, J. F., Peters, D., & Hall, W. (2006). A 13-week dietary toxicity and toxicokinetic study with l-theanine in rats. Food Chem Toxicol, 44(7), 1158-1166. doi:10.1016/j.fct.2006.03.01435. Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). L-Theanine reduces psychological and physiological stress responses. Biol Psychol, 74(1), 39-45. doi:10.1016/j.biopsycho.2006.06.00636. Tian, X., Sun, L., Gou, L., Ling, X., Feng, Y., Wang, L., . . . Liu, Y. (2013). Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res, 1503, 24-32. doi:10.1016/j.brainres.2013.01.04837. Unno, K., Fujitani, K., Takamori, N., Takabayashi, F., Maeda, K., Miyazaki, H., . . . Hoshino, M. (2011). Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice. Free Radic Res, 45(8), 966-974. doi:10.3109/10715762.2011.56686938. Unno, K., Tanida, N., Ishii, N., Yamamoto, H., Iguchi, K., Hoshino, M., . . . Yamada, H. (2013). Anti-stress effect of theanine on students during pharmacy practice: positive correlation among salivary alpha-amylase activity, trait anxiety and subjective stress. Pharmacol Biochem Behav, 111, 128-135. doi:10.1016/j.pbb.2013.09.00439. Dodd, F. L., Kennedy, D. O., Riby, L. M., & Haskell-Ramsay, C. F. (2015a). A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood. Psychopharmacology (Berl), 232(14), 2563-2576. doi:10.1007/s00213-015-3895-040. Rogers, P. J., Smith, J. E., Heatherley, S. V., & Pleydell-Pearce, C. W. (2008). Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology (Berl), 195(4), 569-577. doi:10.1007/s00213-007-0938-141. Foxe, J. J., Morie, K. P., Laud, P. J., Rowson, M. J., de Bruin, E. A., & Kelly, S. P. (2012). Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology, 62(7), 2320-2327. doi:10.1016/j.neuropharm.2012.01.02042. Giesbrecht, T., Rycroft, J. A., Rowson, M. J., & De Bruin, E. A. (2010). The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness. Nutr Neurosci, 13(6), 283-290. doi:10.1179/147683010x1261146076484043. Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol, 77(2), 113-122. doi:10.1016/j.biopsycho.2007.09.00844. Kahathuduwa, C. N., Dassanayake, T. L., Amarakoon, A. M., & Weerasinghe, V. S. (2016). Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr Neurosci. doi:10.1080/1028415x.2016.114484545. Owen, G. N., Parnell, H., De Bruin, E. A., & Rycroft, J. A. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutr Neurosci, 11(4), 193-198. doi:10.1179/147683008x30151346. Einother, S. J., Martens, V. E., Rycroft, J. A., & De Bruin, E. A. (2010). L-theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite, 54(2), 406-409. doi:10.1016/j.appet.2010.01.00347. Deijen, J. B., van der Beek, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology (Berl), 109(4), 489-496.48. Lewerin, C., Matousek, M., Steen, G., Johansson, B., Steen, B., & Nilsson-Ehle, H. (2005). Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr, 81(5), 1155-1162. 49. Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr, 132(6), 1345-1356. 50. Schneider, Z., & Stroinski, A. (1987). Comprehensive B12: chemistry, biochemistry, nutrition, ecology, medicine: Walter de Gruyter.51. Polich, J., & Gloria, R. (2001). Cognitive effects of a Ginkgo biloba/vinpocetine compound in normal adults: systematic assessment of perception, attention and memory. Hum Psychopharmacol, 16(5), 409-416. doi:10.1002/hup.30852. Subhan, Z., & Hindmarch, I. (1985). Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol, 28(5), 567-571. 53. Dollins, A. B., Krock, L. P., Storm, W. F., Wurtman, R. J., & Lieberman, H. R. (1995). L-tyrosine ameliorates some effects of lower body negative pressure stress. Physiol Behav, 57(2), 223-230. 54. Shurtleff, D., Thomas, J. R., Schrot, J., Kowalski, K., & Harford, R. (1994). Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol Biochem Behav, 47(4), 935-941. 55. Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., & Ford, I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev, 9(1), 41-50. 56. Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-Analysis: Melatonin for the Treatment of Primary Sleep Disorders. PLoS One, 8(5), e63773. doi:10.1371/journal.pone.006377357. Inagawa, K., Hiraoka, T., Kohda, T., Yamadera, W., & Takahashi, M. (2006). Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep and Biological Rhythms, 4(1), 75-77. doi:10.1111/j.1479-8425.2006.00193.x58. Bannai, M., Kawai, N., Ono, K., Nakahara, K., & Murakami, N. (2012). The Effects of Glycine on Subjective Daytime Performance in Partially Sleep-Restricted Healthy Volunteers. Front Neurol, 3, 61. doi:10.3389/fneur.2012.0006159. Yamadera, W., Inagawa, K., Chiba, S., Bannai, M., Takahashi, M., & Nakayama, K. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms, 5(2), 126-131. doi:10.1111/j.1479-8425.2007.00262.x60. Tuli, H. S., Kashyap, D., Sharma, A. K., & Sandhu, S. S. (2015). Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci, 135, 147-157. doi:10.1016/j.lfs.2015.06.00461. Herxheimer, A., & Petrie, K. J. (2002). Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev(2), Cd001520. doi:10.1002/14651858.cd00152062. Deng, X., Song, Y., Manson, J. E., Signorello, L. B., Zhang, S. M., Shrubsole, M. J., . . . Dai, Q. (2013). Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 11(1), 187. doi:10.1186/1741-7015-11-18763. Murck, H., & Steiger, A. (1998). Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men -- possible therapeutic implications. Psychopharmacology (Berl), 137(3), 247-252. 64. Nielsen, F. H., Johnson, L. K., & Zeng, H. (2010). Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res, 23(4), 158-168. doi:10.1684/mrh.2010.0220
I find this very troubling. The magnesium supplementation was harmful enough to do a lot of cumulative damage over the months involved (I could have done a lot of writing September 2013 - June 2014), but not so blatantly harmful enough as to be noticeable without a randomized blind self-experiment or at least systematic data collection - neither of which are common among people who would be supplementing magnesium I would much prefer it if my magnesium overdose had come with visible harm (such as waking up in the middle of the night after a nightmare soaked in sweat), since then I’d know quickly and surely, as would anyone else taking magnesium. But the harm I observed in my data? For all I know, that could be affecting every user of magnesium supplements! How would we know otherwise?
One item always of interest to me is sleep; a stimulant is no good if it damages my sleep (unless that’s what it is supposed to do, like modafinil) - anecdotes and research suggest that it does. Over the past few days, my Zeo sleep scores continued to look normal. But that was while not taking nicotine much later than 5 PM. In lieu of a different ml measurer to test my theory that my syringe is misleading me, I decide to more directly test nicotine’s effect on sleep by taking 2ml at 10:30 PM, and go to bed at 12:20; I get a decent ZQ of 94 and I fall asleep in 16 minutes, a bit below my weekly average of 19 minutes. The next day, I take 1ml directly before going to sleep at 12:20; the ZQ is 95 and time to sleep is 14 minutes.
In addition to this, privilege also plays an important role in this epidemic. "Not everyone has access to eat healthily", she mentions. In fact, she recalls an anecdote in which a supermarket owner noticed how people living off food stamps rarely use them to buy fruits and vegetables. Curious about this trend, the owner approached someone with food stamps, to which she admitted she didn't buy them because she didn't know the price prior to weighing them and felt ashamed of asking. His solution? Pre-cutting and packaging fruits in order to make them more accessible to those with lower incomes. 
Similarly, we could try applying Nick Bostrom’s reversal test and ask ourselves, how would we react to a virus which had no effect but to eliminate sleep from alternating nights and double sleep in the intervening nights? We would probably grouch about it for a while and then adapt to our new hedonistic lifestyle of partying or working hard. On the other hand, imagine the virus had the effect of eliminating normal sleep but instead, every 2 minutes, a person would fall asleep for a minute. This would be disastrous! Besides the most immediate problems like safely driving vehicles, how would anything get done? You would hold a meeting and at any point, a third of the participants would be asleep. If the virus made it instead 2 hours on, one hour off, that would be better but still problematic: there would be constant interruptions. And so on, until we reach our present state of 16 hours on, 8 hours off. Given that we rejected all the earlier buffer sizes, one wonders if 16:8 can be defended as uniquely suited to circumstances. Is that optimal? It may be, given the synchronization with the night-day cycle, but I wonder; rush hour alone stands as an argument against synchronized sleep - wouldn’t our infrastructure would be much cheaper if it only had to handle the average daily load rather than cope with the projected peak loads? Might not a longer cycle be better? The longer the day, the less we are interrupted by sleep; it’s a hoary cliche about programmers that they prefer to work in long sustained marathons during long nights rather than sprint occasionally during a distraction-filled day, to the point where some famously adopt a 28 hour day (which evenly divides a week into 6 days). Are there other occupations which would benefit from a 20 hour waking period? Or 24 hour waking period? We might not know because without chemical assistance, circadian rhythms would overpower anyone attempting such schedules. It certainly would be nice if one had long time chunks in which could read a challenging book in one sitting, without heroic arrangements.↩
Compared with those reporting no use, subjects drinking >4 cups/day of decaffeinated coffee were at increased risk of RA [rheumatoid arthritis] (RR 2.58, 95% CI 1.63-4.06). In contrast, women consuming >3 cups/day of tea displayed a decreased risk of RA (RR 0.39, 95% CI 0.16-0.97) compared with women who never drank tea. Caffeinated coffee and daily caffeine intake were not associated with the development of RA.
More photos from this reportage are featured in Quartz’s new book The Objects that Power the Global Economy. You may not have seen these objects before, but they’ve already changed the way you live. Each chapter examines an object that is driving radical change in the global economy. This is from the chapter on the drug modafinil, which explores modifying the mind for a more productive life. 

Took pill around 6 PM; I had a very long drive to and from an airport ahead of me, ideal for Adderall. In case it was Adderall, I chewed up the pill - by making it absorb faster, more of the effect would be there when I needed it, during driving, and not lingering in my system past midnight. Was it? I didn’t notice any change in my pulse, I yawned several times on the way back, my conversation was not more voluminous than usual. I did stay up later than usual, but that’s fully explained by walking to get ice cream. All in all, my best guess was that the pill was placebo, and I feel fairly confident but not hugely confident that it was placebo. I’d give it ~70%. And checking the next morning… I was right! Finally.
Avocados. Avocados are almost as good as blueberries in promoting brain health, says Pratt. "I don't think the avocado gets its due," agrees Kulze. True, the avocado is a fatty fruit, but, says Kulze, it's a monounsaturated fat, which contributes to healthy blood flow. "And healthy blood flow means a healthy brain," she says. Avocados also lower blood pressure, says Pratt, and as hypertension is a risk factor for the decline in cognitive abilities, a lower blood pressure should promote brain health. Avocados are high in calories, however, so Kulze suggests adding just 1/4 to 1/2 of an avocado to one daily meal as a side dish.
Intrigued by old scientific results & many positive anecdotes since, I experimented with microdosing LSD - taking doses ~10μg, far below the level at which it causes its famous effects. At this level, the anecdotes claim the usual broad spectrum of positive effects on mood, depression, ability to do work, etc. After researching the matter a bit, I discovered that as far as I could tell, since the original experiment in the 1960s, no one had ever done a blind or even a randomized self-experiment on it.
Drugs such as Adderall can cause nervousness, headaches, sleeplessness and decreased appetite, among other side-effects. An FDA warning on Adderall's label notes that "amphetamines have a high potential for abuse" and can lead to dependence. (The label also mentions that adults using Adderall have reported serious cardiac problems, though the role of the drug in those cases is unknown.) Yet college students tend to consider Adderall and Ritalin as benign, in part because they are likely to know peers who have taken the drugs since childhood for ADHD. Indeed, McCabe reports, most students who use stimulants for cognitive enhancement obtain them from an acquaintance with a prescription. Usually the pills are given away, but some students sell them.
Another prescription stimulant medication, modafinil (known by the brand name Provigil), is usually prescribed to patients suffering from narcolepsy and shift-work sleep disorder, but it might turn out to have broader applications. “We have conducted at the University of Cambridge double-blind, placebo-controlled studies in healthy people using modafinil and have found improvements in cognition, including in working memory,” Sahakian says. However, she doesn’t think everyone should start using the drug off-label. “There are no long-term safety and efficacy studies of modafinil in healthy people, and so it is unclear what the risks might be.”
(As I was doing this, I reflected how modafinil is such a pure example of the money-time tradeoff. It’s not that you pay someone else to do something for you, which necessarily they will do in a way different from you; nor is it that you have exchanged money to free yourself of a burden of some future time-investment; nor have you paid money for a speculative return of time later in life like with many medical expenses or supplements. Rather, you have paid for 8 hours today of your own time.)

Mercury exposure is among several other heavy metals, such as lead, aluminium and cadmium, that have been implicated in the aetiology of ADHD. Childhood exposure to mercury is predominantly through the consumption of seafood, dental amalgams and vaccines containing thimerosal. The reason why mercury can be so problematic, as well as other metals, is that it is capable of breaching the blood brain barrier. This is the brain’s ‘high fortress’, an intelligent gateway system that filters through molecules that are needed in the brain such as cells, nutrients and signalling molecules, and filters out pathogens and toxins.
That it is somewhat valuable is clear if we consider it under another guise. Imagine you received the same salary you do, but paid every day. Accounting systems would incur considerable costs handling daily payments, since they would be making so many more and so much smaller payments, and they would have to know instantly whether you showed up to work that day and all sorts of other details, and the recipients themselves would waste time dealing with all these checks or looking through all the deposits to their account, and any errors would be that much harder to track down. (And conversely, expensive payday loans are strong evidence that for poor people, a bi-weekly payment is much too infrequent.) One might draw a comparison to batching or buffers in computers: by letting data pile up in buffers, the computer can then deal with them in one batch, amortizing overhead over many items rather than incurring the overhead again and again. The downside, of course, is that latency will suffer and performance may drop based on that or the items becoming outdated & useless. The right trade-off will depend on the specifics; one would not expect random buffer-sizes to be optimal, but one would have to test and see what works best.

Bacopa is a supplement herb often used for memory or stress adaptation. Its chronic effects reportedly take many weeks to manifest, with no important acute effects. Out of curiosity, I bought 2 bottles of Bacognize Bacopa pills and ran a non-randomized non-blinded ABABA quasi-self-experiment from June 2014 to September 2015, measuring effects on my memory performance, sleep, and daily self-ratings of mood/productivity. Because of the very slow onset, small effective sample size, definite temporal trends probably unrelated to Bacopa, and noise in the variables, the results were as expected, ambiguous, and do not strongly support any correlation between Bacopa and memory/sleep/self-rating (+/-/- respectively).


Safety Warning Do not exceed recommended dose. Not intended for pregnant or nursing mothers or children under the age of 18. Individuals taking blood thinners, any other medications, or have any known medical conditions should consult a physician before using any herbal supplements. Discontinue use and consult your doctor if any adverse reactions occur. Not intended to treat obesity; consult a physician before beginning any weight loss program. KEEP OUT OF REACH OF CHILDREN. DO NOT USE IF SAFETY SEAL IS DAMAGED OR MISSING. KEEP BOTTLE CLOSED TIGHTLY AND STORE IN A COOL, DRY PLACE. Do not exceed recommended dose. Not intended for pregnant or nursing mothers or children under the age of 18. Individuals taking blood thinners, any other medications, or have any known medical conditions should consult a physician before using any herbal supplements. Discontinue use and consult your doctor if any adverse reactions occur. Not intended to medical conditions; consult a physician before beginning any weight loss program. KEEP OUT OF REACH OF CHILDREN. DO NOT USE IF SAFETY SEAL IS DAMAGED OR MISSING. KEEP BOTTLE CLOSED TIGHTLY AND STORE IN A COOL, DRY PLACE. CAUTION: Do not exceed recommended dose. St. John’s Wort may contribute to photosensitivity resulting in skin irritation and redness in persons exposed to strong sunlight or tanning booths. Avoid use in patients at risk of bleeding, taking anticoagulants, or with clotting disorders, based on case reports of bleeding. Discontinue use 2-3 weeks prior to some surgical and dental procedures due to increased risk of bleeding. Avoid use in couples who are trying to conceive, based on theoretical reduction of fertility. Pregnant or nursing mothers, children under 18, individuals with history of seizure, taking MAO inhibiting drugs, or with a known medical condition should consult a physician before using this or any dietary supplement. This product is manufactured and packaged in a facility which may also process milk, soy, wheat, egg, peanuts, tree nuts, fish and crustacean shellfish. — This product is a dietary supplement. If you feel an adverse reaction, please contact our support staff immediately to notify us of the issue so that we can offer assistance. Please consult with a physician prior to beginning this supplement. This product has not been approved by the Food and Drug Administration. Keep out of reach of children. Do not use if safety seal is damaged or missing. Store at a room temperature. Avoid in patients at risk of bleeding, taking anticoagulants, or with clotting disorders, based on case reports of bleeding. Discontinue use 2-3 weeks prior to some surgical and dental procedures due to increased risk of bleeding. Use cautiously in patients with history of seizure, based on reports of seizure due to Ginkgo seed ingestion. Not intended for children under 18 years of age. Avoid use in couples who are trying to conceive, based on theoretical reduction of fertility. Pregnant or nursing mothers, children under 18, individuals making MAO inhibiting Drugs, or with a known medical condition should consult a physician before using this or any dietary supplement.
Common environmental toxins – pesticides, for example – cause your brain to release glutamate (a neurotransmitter). Your brain needs glutamate to function, but when you create too much of it it becomes toxic and starts killing neurons. Oxaloacetate protects rodents from glutamate-induced brain damage.[17] Of course, we need more research to determine whether or not oxaloacetate has the same effect on humans.
Qualia Mind, meanwhile, combines more than two dozen ingredients that may support brain and nervous system function – and even empathy, the company claims – including vitamins B, C and D, artichoke stem and leaf extract, taurine and a concentrated caffeine powder. A 2014 review of research on vitamin C, for one, suggests it may help protect against cognitive decline, while most of the research on artichoke extract seems to point to its benefits to other organs like the liver and heart. A small company-lead pilot study on the product found users experienced improvements in reasoning, memory, verbal ability and concentration five days after beginning Qualia Mind.
×