A study published in the Journal of Environmental Healths Perspective stated that "researchers, physicians, and others poked around in the dark crevices of the gene, (are) trying to untangle the clues that suggested gene function could be altered by more than just changes in sequence." This ties in perfectly with what Dr. Lisa mentions about how our lifestyles play a crucial role in how/if we manifest a certain cognitive disfunction. Which brings us to our next question: What kind of "brain diet" can help support this lifestyle?
…Four subjects correctly stated when they received nicotine, five subjects were unsure, and the remaining two stated incorrectly which treatment they received on each occasion of testing. These numbers are sufficiently close to chance expectation that even the four subjects whose statements corresponded to the treatments received may have been guessing.
Ampakines are structurally derived from a popular nootropic called “aniracetam”. Their basic function is to activate AMPA glutamate receptors (AMPARs). Glutamate (a neurotransmitter) is the primary mediator of excitatory synaptic transmission in mammalian brains, which makes it crucial for synaptic plasticity (the adaptation of synapses, the space between neurons across which information is sent), learning and memory, so when you activate or stimulate glutamate receptors, you can trigger many of these functions. AMPARs are distributed across the central nervous system and are stimulated by incoming glutamate to begin the neuroenhancing benefits they’re often used for. But it is possible to have too much glutamate activity. When excess glutamate is produced, accumulates and binds to AMPARs, the result is excitotoxicity, which is a state of cell death (in the case of the central nervous system and your brain, neuron death) resulting from the toxic levels of excitatory amino acids. Excitotoxicity is believed to play a major role in the development of various degenerative neurological conditions such as schizophrenia, delirium and dementia.
By the way, since I’ll throw around the term a few more times in this article, I should probably clarify what an adaptogen actually is. The actual name adaptogen gives some hint as to what these fascinating compounds do: they help you to adapt, specifically by stimulating a physiological adaptive response to some mild, hormesis-like stressor. A process known as general adaptation syndrome (GAS) was first described by the 20th-century physician and organic chemist Hans Selye, who defined GAS as the body’s response to the demands placed upon it. When these demands are excessive and consistent, it can result in the common deleterious symptoms now associated with long-term exposure to chronic stress. GAS is comprised of an alarm stage (characterized by a burst of energy), a resistance stage (characterized by resistance or adaptation to the stressor), and – in the case of excessive and chronic stress – an exhaustion stage (characterized by energy depletion). Adaptogens are plant-derived compounds capable of modulating these phases of GAS by either downregulating stress reactions in the alarm phase or inhibiting the onset of the exhaustion phase, thus providing some degree of protection against damage from stress.
Amphetamine – systematic reviews and meta-analyses report that low-dose amphetamine improved cognitive functions (e.g., inhibitory control, episodic memory, working memory, and aspects of attention) in healthy people, and in individuals with ADHD.[21][22][23][25] A 2014 systematic review noted that low doses of amphetamine also improved memory consolidation, in turn leading to improved recall of information in non-ADHD youth.[23] It also improved task saliency (motivation to perform a task) and performance on tedious tasks that required a high degree of effort.[22][24][25]
×