For illustration, consider amphetamines, Ritalin, and modafinil, all of which have been proposed as cognitive enhancers of attention. These drugs exhibit some positive effects on cognition, especially among individuals with lower baseline abilities. However, individuals of normal or above-average cognitive ability often show negligible improvements or even decrements in performance following drug treatment (for details, see de Jongh, Bolt, Schermer, & Olivier, 2008). For instance, Randall, Shneerson, and File (2005) found that modafinil improved performance only among individuals with lower IQ, not among those with higher IQ. [See also Finke et al 2010 on visual attention.] Farah, Haimm, Sankoorikal, & Chatterjee 2009 found a similar nonlinear relationship of dose to response for amphetamines in a remote-associates task, with low-performing individuals showing enhanced performance but high-performing individuals showing reduced performance. Such ∩-shaped dose-response curves are quite common (see Cools & Robbins, 2004)
Research does not support that drugs like Ritalin help students do well in school. Studies show that prescription stimulants do not help to improve learning or thinking in those who do not actually have ADHD. Further, research reveals that students who abuse prescription stimulants have lower GPAs than students who do not abuse the drugs.[14] Although Ritalin improves concentration, this effect is largely misunderstood among non-prescribed users. These illicit users mistakenly believe that they can use a drug out of its prescribed context, thinking they can reap the benefits intended for legitimate users.
My answer is that this is not a lot of research or very good research (not nearly as good as the research on nicotine, eg.), and assuming it’s true, I don’t value long-term memory that much because LTM is something that is easily assisted or replaced (personal archives, and spaced repetition). For me, my problems tend to be more about akrasia and energy and not getting things done, so even if a stimulant comes with a little cost to long-term memory, it’s still useful for me. I’m going continue to use the caffeine. It’s not so bad in conjunction with tea, is very cheap, and I’m already addicted, so why not? Caffeine is extremely cheap, addictive, has minimal effects on health (and may be beneficial, from the various epidemiological associations with tea/coffee/chocolate & longevity), and costs extra to remove from drinks popular regardless of their caffeine content (coffee and tea again). What would be the point of carefully investigating it? Suppose there was conclusive evidence on the topic, the value of this evidence to me would be roughly $0 or since ignorance is bliss, negative money - because unless the negative effects were drastic (which current studies rule out, although tea has other issues like fluoride or metal contents), I would not change anything about my life. Why? I enjoy my tea too much. My usual tea seller doesn’t even have decaffeinated oolong in general, much less various varieties I might want to drink, apparently because de-caffeinating is so expensive it’s not worthwhile. What am I supposed to do, give up my tea and caffeine just to save on the cost of caffeine? Buy de-caffeinating machines (which I couldn’t even find any prices for, googling)? This also holds true for people who drink coffee or caffeinated soda. (As opposed to a drug like modafinil which is expensive, and so the value of a definitive answer is substantial and would justify some more extensive calculating of cost-benefit.)
For starters, it’s one of the highest antioxidant-rich foods known to man, including vitamin C and vitamin K and fiber. Because of their high levels of gallic acid, blueberries are especially good at protecting our brains from degeneration and stress. Get your daily dose of brain berries in an Omega Blueberry Smoothie, Pumpkin Blueberry Pancakes or in a Healthy Blueberry Cobbler.
Systematic reviews and meta-analyses of clinical human research using low doses of certain central nervous system stimulants found enhanced cognition in healthy people.[21][22][23] In particular, the classes of stimulants that demonstrate cognition-enhancing effects in humans act as direct agonists or indirect agonists of dopamine receptor D1, adrenoceptor A2, or both types of receptor in the prefrontal cortex.[21][22][24][25] Relatively high doses of stimulants cause cognitive deficits.[24][25]
×