The power calculation indicates a 20% chance of getting useful information. My quasi-experiment has <70% chance of being right, and I preserve a general skepticism about any experiment, even one as well done as the medical student one seems to be, and give that one a <80% chance of being right; so let’s call it 70% the effect exists, or 30% it doesn’t exist (which is the case in which I save money by dropping fish oil for 10 years).
Here’s how it works: Donepezil boosts serotonin and acetylcholine in the brain, chemicals that are usually found in high concentrations in the brains of young children which naturally decrease with age. As a cholinesterase inhibitor, Donezepil boosts brain function by increasing the amount of acetylcholine around nerve endings. In dementia and Alzheimer’s patients, the drug has been shown to improve memory function.
But when aficionados talk about nootropics, they usually refer to substances that have supposedly few side effects and low toxicity. Most often they mean piracetam, which Giurgea first synthesized in 1964 and which is approved for therapeutic use in dozens of countries for use in adults and the elderly. Not so in the United States, however, where officially it can be sold only for research purposes.
Omega-3 fatty acids—DHA in particular—contribute to a healthy brain. “The brain’s membranes use these fats to improve cellular structure and brain signaling, which translates into better cognitive function,” says Vasanti Malik, ScD, a research scientist in the Department of Nutrition at the Harvard T.H. Chan School of Public Health. DHA also quells chronic inflammation that can harm brain cells and lead to cognitive decline.
Obviously, as you can see, there are a host of benefits to the better living through science to be had through optimizing your brain with specific compounds. So, putting aside the intriguing topic of psychedelics for the moment (yes, yes, I know you probably want to know how to microdose with LSD or psilocybin), what’s the difference between a smart drug and a nootropic, and how do you choose which to take? You’re about to find out.
Absorption of nicotine across biological membranes depends on pH. Nicotine is a weak base with a pKa of 8.0 (Fowler, 1954). In its ionized state, such as in acidic environments, nicotine does not rapidly cross membranes…About 80 to 90% of inhaled nicotine is absorbed during smoking as assessed using C14-nicotine (Armitage et al., 1975). The efficacy of absorption of nicotine from environmental smoke in nonsmoking women has been measured to be 60 to 80% (Iwase et al., 1991)…The various formulations of nicotine replacement therapy (NRT), such as nicotine gum, transdermal patch, nasal spray, inhaler, sublingual tablets, and lozenges, are buffered to alkaline pH to facilitate the absorption of nicotine through cell membranes. Absorption of nicotine from all NRTs is slower and the increase in nicotine blood levels more gradual than from smoking (Table 1). This slow increase in blood and especially brain levels results in low abuse liability of NRTs (Henningfield and Keenan, 1993; West et al., 2000). Only nasal spray provides a rapid delivery of nicotine that is closer to the rate of nicotine delivery achieved with smoking (Sutherland et al., 1992; Gourlay and Benowitz, 1997; Guthrie et al., 1999). The absolute dose of nicotine absorbed systemically from nicotine gum is much less than the nicotine content of the gum, in part, because considerable nicotine is swallowed with subsequent first-pass metabolism (Benowitz et al., 1987). Some nicotine is also retained in chewed gum. A portion of the nicotine dose is swallowed and subjected to first-pass metabolism when using other NRTs, inhaler, sublingual tablets, nasal spray, and lozenges (Johansson et al., 1991; Bergstrom et al., 1995; Lunell et al., 1996; Molander and Lunell, 2001; Choi et al., 2003). Bioavailability for these products with absorption mainly through the mucosa of the oral cavity and a considerable swallowed portion is about 50 to 80% (Table 1)…Nicotine is poorly absorbed from the stomach because it is protonated (ionized) in the acidic gastric fluid, but is well absorbed in the small intestine, which has a more alkaline pH and a large surface area. Following the administration of nicotine capsules or nicotine in solution, peak concentrations are reached in about 1 h (Benowitz et al., 1991; Zins et al., 1997; Dempsey et al., 2004). The oral bioavailability of nicotine is about 20 to 45% (Benowitz et al., 1991; Compton et al., 1997; Zins et al., 1997). Oral bioavailability is incomplete because of the hepatic first-pass metabolism. Also the bioavailability after colonic (enema) administration of nicotine (examined as a potential therapy for ulcerative colitis) is low, around 15 to 25%, presumably due to hepatic first-pass metabolism (Zins et al., 1997). Cotinine is much more polar than nicotine, is metabolized more slowly, and undergoes little, if any, first-pass metabolism after oral dosing (Benowitz et al., 1983b; De Schepper et al., 1987; Zevin et al., 1997).
It makes no sense to ban the use of neuroenhancers. Too many people are already taking them, and the users tend to be educated and privileged people who proceed with just enough caution to avoid getting into trouble. Besides, Anjan Chatterjee is right that there is an apt analogy with plastic surgery. In a consumer society like ours, if people are properly informed about the risks and benefits of neuroenhancers, they can make their own choices about how to alter their minds, just as they can make their own decisions about shaping their bodies.
1. Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T., & Nathan, P. J. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl), 156(4), 481-484. 2. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complementary and Alternative Medicine, 12(1), 70. doi:10.1186/1472-6882-12-703. Pase, M. P., Kean, J., Sarris, J., Neale, C., Scholey, A. B., & Stough, C. (2012). The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med, 18(7), 647-652. doi:10.1089/acm.2011.03674. Raghav, S., Singh, H., Dalal, P. K., Srivastava, J. S., & Asthana, O. P. (2006). Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry, 48(4), 238-242. doi:10.4103/0019-5545.315555. Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2013). Cognitive effects of two nutraceuticals Ginseng and Bacopa [...]: a review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75(3), 728-737. doi:10.1111/bcp.120026. Prynne, C. J., Thane, C. W., Prentice, A., & Wadsworth, M. E. (2005). Intake and sources of phylloquinone (vitamin K(1)) in 4-year-old British children: comparison between 1950 and the 1990s. Public Health Nutr, 8(2), 171-180.7. Ferland, G. (2012). Vitamin K and the nervous system: an overview of its actions. Adv Nutr, 3(2), 204-212. doi:10.3945/an.111.0017848. Zeidan, Y. H., & Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends in molecular medicine, 13(8), 327-336.9. Beulens, J. W., Bots, M. L., Atsma, F., Bartelink, M. L., Prokop, M., Geleijnse, J. M., . . . van der Schouw, Y. T. (2009). High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis, 203(2), 489-493. doi:10.1016/j.atherosclerosis.2008.07.01010. Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H., van der Meer, I. M., . . . Witteman, J. C. (2004). Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr, 134(11), 3100-3105.11. Theuwissen, E., Magdeleyns, E. J., Braam, L. A., Teunissen, K. J., Knapen, M. H., Binnekamp, I. A., . . . Vermeer, C. (2014). Vitamin K status in healthy volunteers. Food Funct, 5(2), 229-234. doi:10.1039/c3fo60464k12. Barros, M. P., Poppe, S. C., & Bondan, E. F. (2014). Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients, 6(3), 1293-1317.13. Pashkow, F. J., Watumull, D. G., & Campbell, C. L. (2008). Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 101(10a), 58d-68d. doi:10.1016/j.amjcard.2008.02.01014. Annweiler, C., Schott, A. M., Berrut, G., Chauvire, V., Le Gall, D., Inzitari, M., & Beauchet, O. (2010). Vitamin D and ageing: neurological issues. Neuropsychobiology, 62(3), 139-150. doi:10.1159/00031857015. Brown, J., Bianco, J. I., McGrath, J. J., & Eyles, D. W. (2003). 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett, 343(2), 139-143.16. Naveilhan, P., Neveu, I., Wion, D., & Brachet, P. (1996). 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 7(13), 2171-2175.17. Tangpricha, V., Pearce, E. N., Chen, T. C., & Holick, M. F. (2002). Vitamin D insufficiency among free-living healthy young adults. Am J Med, 112(8), 659-662.18. Annweiler, C., Allali, G., Allain, P., Bridenbaugh, S., Schott, A. M., Kressig, R. W., & Beauchet, O. (2009). Vitamin D and cognitive performance in adults: a systematic review. European Journal of Neurology, 16(10), 1083-1089. doi:10.1111/j.1468-1331.2009.02755.x19. Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., Richard-Devantoy, S., Duque, G., & Beauchet, O. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis, 37(1), 147-171. doi:10.3233/jad-13045220. Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., . . . Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology, 79(13), 1397-1405.21. Dean, A. J., Bellgrove, M. A., Hall, T., Phan, W. M. J., Eyles, D. W., Kvaskoff, D., & McGrath, J. J. (2011). Effects of Vitamin D Supplementation on Cognitive and Emotional Functioning in Young Adults – A Randomised Controlled Trial. PLoS One, 6(11), e25966. doi:10.1371/journal.pone.002596622. Etgen, T., Sander, D., Bickel, H., Sander, K., & Forstl, H. (2012). Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord, 33(5), 297-305. doi:10.1159/00033970223. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest, 35(11), 691-699. doi:10.1111/j.1365-2362.2005.01570.x24. Huhn, S., Masouleh, S. K., Stumvoll, M., Villringer, A., & Witte, A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Frontiers in aging neuroscience, 7.25. Bradbury, J. (2011). Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients, 3(5), 529-554. doi:10.3390/nu305052926. Einother, S. J., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl), 225(2), 251-274. doi:10.1007/s00213-012-2917-427. Johnson, L. C., Spinweber, C. L., & Gomez, S. A. (1990). Benzodiazepines and caffeine: effect on daytime sleepiness, performance, and mood. Psychopharmacology (Berl), 101(2), 160-167. 28. Smith, A., Kendrick, A., Maben, A., & Salmon, J. (1994). Effects of breakfast and caffeine on cognitive performance, mood and cardiovascular functioning. Appetite, 22(1), 39-55. doi:10.1006/appe.1994.100429. Smith, A. P., Kendrick, A. M., & Maben, A. L. (1992). Effects of breakfast and caffeine on performance and mood in the late morning and after lunch. Neuropsychobiology, 26(4), 198-204. doi:11892030. Smith, B. D., Davidson, R. A., & Green, R. L. (1993). Effects of caffeine and gender on physiology and performance: further tests of a biobehavioral model. Physiol Behav, 54(3), 415-422. 31. Warburton, D. M. (1995). Effects of caffeine on cognition and mood without caffeine abstinence. Psychopharmacology (Berl), 119(1), 66-70. 32. Wilhelmus, M. M., Hay, J. L., Zuiker, R. G., Okkerse, P., Perdrieu, C., Sauser, J., . . . Silber, B. Y. (2017). Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects. J Psychopharmacol, 31(2), 222-232. doi:10.1177/026988111666859333. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 51(1), 83-133. 34. Borzelleca, J. F., Peters, D., & Hall, W. (2006). A 13-week dietary toxicity and toxicokinetic study with l-theanine in rats. Food Chem Toxicol, 44(7), 1158-1166. doi:10.1016/j.fct.2006.03.01435. Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). L-Theanine reduces psychological and physiological stress responses. Biol Psychol, 74(1), 39-45. doi:10.1016/j.biopsycho.2006.06.00636. Tian, X., Sun, L., Gou, L., Ling, X., Feng, Y., Wang, L., . . . Liu, Y. (2013). Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res, 1503, 24-32. doi:10.1016/j.brainres.2013.01.04837. Unno, K., Fujitani, K., Takamori, N., Takabayashi, F., Maeda, K., Miyazaki, H., . . . Hoshino, M. (2011). Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice. Free Radic Res, 45(8), 966-974. doi:10.3109/10715762.2011.56686938. Unno, K., Tanida, N., Ishii, N., Yamamoto, H., Iguchi, K., Hoshino, M., . . . Yamada, H. (2013). Anti-stress effect of theanine on students during pharmacy practice: positive correlation among salivary alpha-amylase activity, trait anxiety and subjective stress. Pharmacol Biochem Behav, 111, 128-135. doi:10.1016/j.pbb.2013.09.00439. Dodd, F. L., Kennedy, D. O., Riby, L. M., & Haskell-Ramsay, C. F. (2015a). A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood. Psychopharmacology (Berl), 232(14), 2563-2576. doi:10.1007/s00213-015-3895-040. Rogers, P. J., Smith, J. E., Heatherley, S. V., & Pleydell-Pearce, C. W. (2008). Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology (Berl), 195(4), 569-577. doi:10.1007/s00213-007-0938-141. Foxe, J. J., Morie, K. P., Laud, P. J., Rowson, M. J., de Bruin, E. A., & Kelly, S. P. (2012). Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology, 62(7), 2320-2327. doi:10.1016/j.neuropharm.2012.01.02042. Giesbrecht, T., Rycroft, J. A., Rowson, M. J., & De Bruin, E. A. (2010). The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness. Nutr Neurosci, 13(6), 283-290. doi:10.1179/147683010x1261146076484043. Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol, 77(2), 113-122. doi:10.1016/j.biopsycho.2007.09.00844. Kahathuduwa, C. N., Dassanayake, T. L., Amarakoon, A. M., & Weerasinghe, V. S. (2016). Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr Neurosci. doi:10.1080/1028415x.2016.114484545. Owen, G. N., Parnell, H., De Bruin, E. A., & Rycroft, J. A. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutr Neurosci, 11(4), 193-198. doi:10.1179/147683008x30151346. Einother, S. J., Martens, V. E., Rycroft, J. A., & De Bruin, E. A. (2010). L-theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite, 54(2), 406-409. doi:10.1016/j.appet.2010.01.00347. Deijen, J. B., van der Beek, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology (Berl), 109(4), 489-496.48. Lewerin, C., Matousek, M., Steen, G., Johansson, B., Steen, B., & Nilsson-Ehle, H. (2005). Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr, 81(5), 1155-1162. 49. Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr, 132(6), 1345-1356. 50. Schneider, Z., & Stroinski, A. (1987). Comprehensive B12: chemistry, biochemistry, nutrition, ecology, medicine: Walter de Gruyter.51. Polich, J., & Gloria, R. (2001). Cognitive effects of a Ginkgo biloba/vinpocetine compound in normal adults: systematic assessment of perception, attention and memory. Hum Psychopharmacol, 16(5), 409-416. doi:10.1002/hup.30852. Subhan, Z., & Hindmarch, I. (1985). Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol, 28(5), 567-571. 53. Dollins, A. B., Krock, L. P., Storm, W. F., Wurtman, R. J., & Lieberman, H. R. (1995). L-tyrosine ameliorates some effects of lower body negative pressure stress. Physiol Behav, 57(2), 223-230. 54. Shurtleff, D., Thomas, J. R., Schrot, J., Kowalski, K., & Harford, R. (1994). Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol Biochem Behav, 47(4), 935-941. 55. Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., & Ford, I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev, 9(1), 41-50. 56. Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-Analysis: Melatonin for the Treatment of Primary Sleep Disorders. PLoS One, 8(5), e63773. doi:10.1371/journal.pone.006377357. Inagawa, K., Hiraoka, T., Kohda, T., Yamadera, W., & Takahashi, M. (2006). Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep and Biological Rhythms, 4(1), 75-77. doi:10.1111/j.1479-8425.2006.00193.x58. Bannai, M., Kawai, N., Ono, K., Nakahara, K., & Murakami, N. (2012). The Effects of Glycine on Subjective Daytime Performance in Partially Sleep-Restricted Healthy Volunteers. Front Neurol, 3, 61. doi:10.3389/fneur.2012.0006159. Yamadera, W., Inagawa, K., Chiba, S., Bannai, M., Takahashi, M., & Nakayama, K. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms, 5(2), 126-131. doi:10.1111/j.1479-8425.2007.00262.x60. Tuli, H. S., Kashyap, D., Sharma, A. K., & Sandhu, S. S. (2015). Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci, 135, 147-157. doi:10.1016/j.lfs.2015.06.00461. Herxheimer, A., & Petrie, K. J. (2002). Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev(2), Cd001520. doi:10.1002/14651858.cd00152062. Deng, X., Song, Y., Manson, J. E., Signorello, L. B., Zhang, S. M., Shrubsole, M. J., . . . Dai, Q. (2013). Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 11(1), 187. doi:10.1186/1741-7015-11-18763. Murck, H., & Steiger, A. (1998). Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men -- possible therapeutic implications. Psychopharmacology (Berl), 137(3), 247-252. 64. Nielsen, F. H., Johnson, L. K., & Zeng, H. (2010). Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res, 23(4), 158-168. doi:10.1684/mrh.2010.0220
The use of prescription stimulants is especially prevalent among students.[9] Surveys suggest that 0.7–4.5% of German students have used cognitive enhancers in their lifetime.[10][11][12] Stimulants such as dimethylamylamine and methylphenidate are used on college campuses and by younger groups.[13] Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily intended for performance enhancement rather than as recreational drugs.[14][15][16] Several factors positively and negatively influence an individual's willingness to use a drug for the purpose of enhancing cognitive performance. Among them are personal characteristics, drug characteristics, and characteristics of the social context.[10][11][17][18]