As for newer nootropic drugs, there are unknown risks. “Piracetam has been studied for decades,” says cognitive neuroscientist Andrew Hill, the founder of a neurofeedback company in Los Angeles called Peak Brain Institute. But “some of [the newer] compounds are things that some random editor found in a scientific article, copied the formula down and sent it to China and had a bulk powder developed three months later that they’re selling. Please don’t take it, people!”
Speaking of addictive substances, some people might have considered cocaine a nootropic (think: the finance industry in Wall Street in the 1980s). The incredible damage this drug can do is clear, but the plant from which it comes has been used to make people feel more energetic and less hungry, and to counteract altitude sickness in Andean South American cultures for 5,000 years, according to an opinion piece that Bolivia’s president, Evo Morales Ayma, wrote for the New York Times.

Nootropics. You might have heard of them. The “limitless pill” that keeps Billionaires rich. The ‘smart drugs’ that students are taking to help boost their hyperfocus. The cognitive enhancers that give corporate executives an advantage. All very exciting. But as always, the media are way behind the curve. Yes, for the past few decades, cognitive enhancers were largely sketchy substances that people used to grasp at a short term edge at the expense of their health and wellbeing. But the days of taking prescription pills to pull an all-nighter are so 2010. The better, safer path isn’t with these stimulants but with nootropics. Nootropics consist of supplements and substances which enhance your cognition, in particular when it comes to motivation, creativity, memory, and other executive functions.
Celastrus paniculatus, also known as the Intellect Tree, is perhaps one of the more interesting Ayurvedic medicinal plants that has been used for thousands of years, and one that I personally use quite frequently as part of the supplement “Qualia Mind”. In the Ayurvedic tradition, oil derived from C. paniculatus (Malkanguni oil) is used to enhance memory and intellectual capacity, as well as to improve dream recall and induce lucid dreams. In a study performed on healthy rats, the oil was shown to improve 24-hour memory retention after a single dose, an effect accompanied by a reduction in monoamines like norepinephrine, dopamine and serotonin, indicating a decreased turnover of these neurotransmitters which, in turn, may aid in reducing conditions like depression. In another study with rats, C. paniculatus oil administered for 14 days reversed stress-induced spatial learning and memory impairment and restored working memory. In mice with scopolamine-induced memory deficits, the oil has been shown to improve both spatial and fear memory (a type of fear conditioning through which an organism learns to avoid detrimental situations or events). Traditionally, is taken in seed form, starting with 10 seeds and working up to 15 and finally 20 seeds.
Do you sometimes feel like you are only half-there in your daily conversations because you lack concentration, or mental focus? With Cognizance you will no longer be wondering if the people conversing with you realize your lack of mental focus as you interact. This supplement helps by improving mental clarity and focus1, boosting intelligence levels, memory function, and increasing your level of concentration and alertness. As an added bonus, Cognizance can provide you with an increased level of energy and improved mood. COGNIZANCE BENEFITS: - Improves mood - Boosts memory function - Raises intelligence levels - Increases physical energy - Improves mental clarity - Boosts ability to focus - Improves concentration - Increases level of alertness The proprietary ingredients in Cognizance improve the functioning of the mind and body in several ways. One ingredient, dimethylaminoethanol is responsible for improving mood, boosting the function of the memory, raising intelligence levels, and increasing physical energy. Another, L-pyroglutamic acid, works to improve mental focus and concentration. These ingredients, combined with the others in Cognizance allow it to offer these benefits and more.
Cost-wise, the gum itself (~$5) is an irrelevant sunk cost and the DNB something I ought to be doing anyway. If the results are negative (which I’ll define as d<0.2), I may well drop nicotine entirely since I have no reason to expect other forms (patches) or higher doses (2mg+) to create new benefits. This would save me an annual expense of ~$40 with a net present value of <820 ($); even if we count the time-value of the 20 minutes for the 5 DNB rounds over 48 days (0.2 \times 48 \times 7.25 = 70), it’s still a clear profit to run a convincing experiment.

This research is in contrast to the other substances I like, such as piracetam or fish oil. I knew about withdrawal of course, but it was not so bad when I was drinking only tea. And the side-effects like jitteriness are worse on caffeine without tea; I chalk this up to the lack of theanine. (My later experiences with theanine seems to confirm this.) These negative effects mean that caffeine doesn’t satisfy the strictest definition of nootropic (having no negative effects), but is merely a cognitive enhancer (with both benefits & costs). One might wonder why I use caffeine anyway if I am so concerned with mental ability.
However, as a result of the efficacy of this type of stacking, the supplement world is saturated with brain-boosting blends, and it can be difficult to cut through the confusion and figure out what really works and what could be a waste of time and money, or downright dangerous. The fact is, when creating your own stack, you must carefully think about your specific needs and goals. For example, if you want to reduce anxiety and depression, but don’t necessarily care to enhance your cognitive performance or get through a day of work in a sleep-deprived state, you could just stick to a single nootropic that increases dopamine levels, such as Mucuna pruriens or tryptophan. Or if you wanted to reduce anxiety and depression while simultaneously improving your memory because you’re studying for a school or work exam, you could add Bacopa monnieri to the mucuna or tryptophan. Then, let’s say you want long-term cognitive performance to the mix that lasts an entire day: in this case, you’d add a racetam, and to avoid an end of day crash, a touch of choline or DHA. It’s a bit like cooking in the kitchen, isn’t it?
I have personally found that with respect to the NOOTROPIC effect(s) of all the RACETAMS, whilst I have experienced improvements in concentration and working capacity / productivity, I have never experienced a noticeable ongoing improvement in memory. COLURACETAM is the only RACETAM that I have taken wherein I noticed an improvement in MEMORY, both with regards to SHORT-TERM and MEDIUM-TERM MEMORY. To put matters into perspective, the memory improvement has been mild, yet still significant; whereas I have experienced no such improvement at all with the other RACETAMS.

And when it comes to your brain, it’s full of benefits, too. Coconut oil works as a natural anti-inflammatory, suppressing cells responsible for inflammation. It can help with memory loss as you age and destroy bad bacteria that hangs out in your gut. (5) Get your dose of coconut oil in this Baked Grouper with Coconut Cilantro Sauce or Coconut Crust Pizza.
Pop this pill and improve your memory. Swallow that one and reduce your cognitive decline. We see ads for such products all the time and I suspect they will increase as the baby boomers reach senior citizenhood. The most popular brain boosting supplements are fish oil pills and they are also probably the best studied ones. The results are not encouraging.
It’s also loaded with vitamin C — in fact, just one cup provides you with 150 percent of your recommended daily intake. Its high-fiber levels mean that you’ll feel full quickly, too. If you’ve only chowed down on overcooked, tasteless broccoli, you’ll love my Crockpot Beef and Broccoli, Creamy Broccoli Soup and Broccoli Pesto Dip — they’ll turn you into a broccoli lover fast!
In avoiding experimenting with more Russian Noopept pills and using instead the easily-purchased powder form of Noopept, there are two opposing considerations: Russian Noopept is reportedly the best, so we might expect anything I buy online to be weaker or impure or inferior somehow and the effect size smaller than in the pilot experiment; but by buying my own supply & using powder I can double or triple the dose to 20mg or 30mg (to compensate for the original under-dosing of 10mg) and so the effect size larger than in the pilot experiment.

It’s also loaded with vitamin C — in fact, just one cup provides you with 150 percent of your recommended daily intake. Its high-fiber levels mean that you’ll feel full quickly, too. If you’ve only chowed down on overcooked, tasteless broccoli, you’ll love my Crockpot Beef and Broccoli, Creamy Broccoli Soup and Broccoli Pesto Dip — they’ll turn you into a broccoli lover fast!
Caffeine keeps you awake, which keeps you coding. It may also be a nootropic, increasing brain-power. Both desirable results. However, it also inhibits vitamin D receptors, and as such decreases the body’s uptake of this-much-needed-vitamin. OK, that’s not so bad, you’re not getting the maximum dose of vitamin D. So what? Well, by itself caffeine may not cause you any problems, but combined with cutting off a major source of the vitamin - the production via sunlight - you’re leaving yourself open to deficiency in double-quick time.
My general impression is positive; it does seem to help with endurance and extended the effect of piracetam+choline, but is not as effective as that combo. At $20 for 30g (bought from Smart Powders), I’m not sure it’s worthwhile, but I think at $10-15 it would probably be worthwhile. Sulbutiamine seems to affect my sleep negatively, like caffeine. I bought 2 or 3 canisters for my third batch of pills along with the theanine. For a few nights in a row, I slept terribly and stayed awake thinking until the wee hours of the morning; eventually I realized it was because I was taking the theanine pills along with the sleep-mix pills, and the only ingredient that was a stimulant in the batch was - sulbutiamine. I cut out the theanine pills at night, and my sleep went back to normal. (While very annoying, this, like the creatine & taekwondo example, does tend to prove to me that sulbutiamine was doing something and it is not pure placebo effect.)
1. Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T., & Nathan, P. J. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl), 156(4), 481-484. 2. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complementary and Alternative Medicine, 12(1), 70. doi:10.1186/1472-6882-12-703. Pase, M. P., Kean, J., Sarris, J., Neale, C., Scholey, A. B., & Stough, C. (2012). The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med, 18(7), 647-652. doi:10.1089/acm.2011.03674. Raghav, S., Singh, H., Dalal, P. K., Srivastava, J. S., & Asthana, O. P. (2006). Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry, 48(4), 238-242. doi:10.4103/0019-5545.315555. Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2013). Cognitive effects of two nutraceuticals Ginseng and Bacopa [...]: a review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75(3), 728-737. doi:10.1111/bcp.120026. Prynne, C. J., Thane, C. W., Prentice, A., & Wadsworth, M. E. (2005). Intake and sources of phylloquinone (vitamin K(1)) in 4-year-old British children: comparison between 1950 and the 1990s. Public Health Nutr, 8(2), 171-180.7. Ferland, G. (2012). Vitamin K and the nervous system: an overview of its actions. Adv Nutr, 3(2), 204-212. doi:10.3945/an.111.0017848. Zeidan, Y. H., & Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends in molecular medicine, 13(8), 327-336.9. Beulens, J. W., Bots, M. L., Atsma, F., Bartelink, M. L., Prokop, M., Geleijnse, J. M., . . . van der Schouw, Y. T. (2009). High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis, 203(2), 489-493. doi:10.1016/j.atherosclerosis.2008.07.01010. Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H., van der Meer, I. M., . . . Witteman, J. C. (2004). Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr, 134(11), 3100-3105.11. Theuwissen, E., Magdeleyns, E. J., Braam, L. A., Teunissen, K. J., Knapen, M. H., Binnekamp, I. A., . . . Vermeer, C. (2014). Vitamin K status in healthy volunteers. Food Funct, 5(2), 229-234. doi:10.1039/c3fo60464k12. Barros, M. P., Poppe, S. C., & Bondan, E. F. (2014). Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients, 6(3), 1293-1317.13. Pashkow, F. J., Watumull, D. G., & Campbell, C. L. (2008). Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 101(10a), 58d-68d. doi:10.1016/j.amjcard.2008.02.01014. Annweiler, C., Schott, A. M., Berrut, G., Chauvire, V., Le Gall, D., Inzitari, M., & Beauchet, O. (2010). Vitamin D and ageing: neurological issues. Neuropsychobiology, 62(3), 139-150. doi:10.1159/00031857015. Brown, J., Bianco, J. I., McGrath, J. J., & Eyles, D. W. (2003). 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett, 343(2), 139-143.16. Naveilhan, P., Neveu, I., Wion, D., & Brachet, P. (1996). 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 7(13), 2171-2175.17. Tangpricha, V., Pearce, E. N., Chen, T. C., & Holick, M. F. (2002). Vitamin D insufficiency among free-living healthy young adults. Am J Med, 112(8), 659-662.18. Annweiler, C., Allali, G., Allain, P., Bridenbaugh, S., Schott, A. M., Kressig, R. W., & Beauchet, O. (2009). Vitamin D and cognitive performance in adults: a systematic review. European Journal of Neurology, 16(10), 1083-1089. doi:10.1111/j.1468-1331.2009.02755.x19. Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., Richard-Devantoy, S., Duque, G., & Beauchet, O. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis, 37(1), 147-171. doi:10.3233/jad-13045220. Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., . . . Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology, 79(13), 1397-1405.21. Dean, A. J., Bellgrove, M. A., Hall, T., Phan, W. M. J., Eyles, D. W., Kvaskoff, D., & McGrath, J. J. (2011). Effects of Vitamin D Supplementation on Cognitive and Emotional Functioning in Young Adults – A Randomised Controlled Trial. PLoS One, 6(11), e25966. doi:10.1371/journal.pone.002596622. Etgen, T., Sander, D., Bickel, H., Sander, K., & Forstl, H. (2012). Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord, 33(5), 297-305. doi:10.1159/00033970223. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest, 35(11), 691-699. doi:10.1111/j.1365-2362.2005.01570.x24. Huhn, S., Masouleh, S. K., Stumvoll, M., Villringer, A., & Witte, A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Frontiers in aging neuroscience, 7.25. Bradbury, J. (2011). Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients, 3(5), 529-554. doi:10.3390/nu305052926. Einother, S. J., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl), 225(2), 251-274. doi:10.1007/s00213-012-2917-427. Johnson, L. C., Spinweber, C. L., & Gomez, S. A. (1990). Benzodiazepines and caffeine: effect on daytime sleepiness, performance, and mood. Psychopharmacology (Berl), 101(2), 160-167. 28. Smith, A., Kendrick, A., Maben, A., & Salmon, J. (1994). Effects of breakfast and caffeine on cognitive performance, mood and cardiovascular functioning. Appetite, 22(1), 39-55. doi:10.1006/appe.1994.100429. Smith, A. P., Kendrick, A. M., & Maben, A. L. (1992). Effects of breakfast and caffeine on performance and mood in the late morning and after lunch. Neuropsychobiology, 26(4), 198-204. doi:11892030. Smith, B. D., Davidson, R. A., & Green, R. L. (1993). Effects of caffeine and gender on physiology and performance: further tests of a biobehavioral model. Physiol Behav, 54(3), 415-422. 31. Warburton, D. M. (1995). Effects of caffeine on cognition and mood without caffeine abstinence. Psychopharmacology (Berl), 119(1), 66-70. 32. Wilhelmus, M. M., Hay, J. L., Zuiker, R. G., Okkerse, P., Perdrieu, C., Sauser, J., . . . Silber, B. Y. (2017). Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects. J Psychopharmacol, 31(2), 222-232. doi:10.1177/026988111666859333. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 51(1), 83-133. 34. Borzelleca, J. F., Peters, D., & Hall, W. (2006). A 13-week dietary toxicity and toxicokinetic study with l-theanine in rats. Food Chem Toxicol, 44(7), 1158-1166. doi:10.1016/j.fct.2006.03.01435. Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). L-Theanine reduces psychological and physiological stress responses. Biol Psychol, 74(1), 39-45. doi:10.1016/j.biopsycho.2006.06.00636. Tian, X., Sun, L., Gou, L., Ling, X., Feng, Y., Wang, L., . . . Liu, Y. (2013). Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res, 1503, 24-32. doi:10.1016/j.brainres.2013.01.04837. Unno, K., Fujitani, K., Takamori, N., Takabayashi, F., Maeda, K., Miyazaki, H., . . . Hoshino, M. (2011). Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice. Free Radic Res, 45(8), 966-974. doi:10.3109/10715762.2011.56686938. Unno, K., Tanida, N., Ishii, N., Yamamoto, H., Iguchi, K., Hoshino, M., . . . Yamada, H. (2013). Anti-stress effect of theanine on students during pharmacy practice: positive correlation among salivary alpha-amylase activity, trait anxiety and subjective stress. Pharmacol Biochem Behav, 111, 128-135. doi:10.1016/j.pbb.2013.09.00439. Dodd, F. L., Kennedy, D. O., Riby, L. M., & Haskell-Ramsay, C. F. (2015a). A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood. Psychopharmacology (Berl), 232(14), 2563-2576. doi:10.1007/s00213-015-3895-040. Rogers, P. J., Smith, J. E., Heatherley, S. V., & Pleydell-Pearce, C. W. (2008). Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology (Berl), 195(4), 569-577. doi:10.1007/s00213-007-0938-141. Foxe, J. J., Morie, K. P., Laud, P. J., Rowson, M. J., de Bruin, E. A., & Kelly, S. P. (2012). Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology, 62(7), 2320-2327. doi:10.1016/j.neuropharm.2012.01.02042. Giesbrecht, T., Rycroft, J. A., Rowson, M. J., & De Bruin, E. A. (2010). The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness. Nutr Neurosci, 13(6), 283-290. doi:10.1179/147683010x1261146076484043. Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol, 77(2), 113-122. doi:10.1016/j.biopsycho.2007.09.00844. Kahathuduwa, C. N., Dassanayake, T. L., Amarakoon, A. M., & Weerasinghe, V. S. (2016). Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr Neurosci. doi:10.1080/1028415x.2016.114484545. Owen, G. N., Parnell, H., De Bruin, E. A., & Rycroft, J. A. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutr Neurosci, 11(4), 193-198. doi:10.1179/147683008x30151346. Einother, S. J., Martens, V. E., Rycroft, J. A., & De Bruin, E. A. (2010). L-theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite, 54(2), 406-409. doi:10.1016/j.appet.2010.01.00347. Deijen, J. B., van der Beek, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology (Berl), 109(4), 489-496.48. Lewerin, C., Matousek, M., Steen, G., Johansson, B., Steen, B., & Nilsson-Ehle, H. (2005). Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr, 81(5), 1155-1162. 49. Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr, 132(6), 1345-1356. 50. Schneider, Z., & Stroinski, A. (1987). Comprehensive B12: chemistry, biochemistry, nutrition, ecology, medicine: Walter de Gruyter.51. Polich, J., & Gloria, R. (2001). Cognitive effects of a Ginkgo biloba/vinpocetine compound in normal adults: systematic assessment of perception, attention and memory. Hum Psychopharmacol, 16(5), 409-416. doi:10.1002/hup.30852. Subhan, Z., & Hindmarch, I. (1985). Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol, 28(5), 567-571. 53. Dollins, A. B., Krock, L. P., Storm, W. F., Wurtman, R. J., & Lieberman, H. R. (1995). L-tyrosine ameliorates some effects of lower body negative pressure stress. Physiol Behav, 57(2), 223-230. 54. Shurtleff, D., Thomas, J. R., Schrot, J., Kowalski, K., & Harford, R. (1994). Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol Biochem Behav, 47(4), 935-941. 55. Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., & Ford, I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev, 9(1), 41-50. 56. Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-Analysis: Melatonin for the Treatment of Primary Sleep Disorders. PLoS One, 8(5), e63773. doi:10.1371/journal.pone.006377357. Inagawa, K., Hiraoka, T., Kohda, T., Yamadera, W., & Takahashi, M. (2006). Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep and Biological Rhythms, 4(1), 75-77. doi:10.1111/j.1479-8425.2006.00193.x58. Bannai, M., Kawai, N., Ono, K., Nakahara, K., & Murakami, N. (2012). The Effects of Glycine on Subjective Daytime Performance in Partially Sleep-Restricted Healthy Volunteers. Front Neurol, 3, 61. doi:10.3389/fneur.2012.0006159. Yamadera, W., Inagawa, K., Chiba, S., Bannai, M., Takahashi, M., & Nakayama, K. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms, 5(2), 126-131. doi:10.1111/j.1479-8425.2007.00262.x60. Tuli, H. S., Kashyap, D., Sharma, A. K., & Sandhu, S. S. (2015). Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci, 135, 147-157. doi:10.1016/j.lfs.2015.06.00461. Herxheimer, A., & Petrie, K. J. (2002). Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev(2), Cd001520. doi:10.1002/14651858.cd00152062. Deng, X., Song, Y., Manson, J. E., Signorello, L. B., Zhang, S. M., Shrubsole, M. J., . . . Dai, Q. (2013). Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 11(1), 187. doi:10.1186/1741-7015-11-18763. Murck, H., & Steiger, A. (1998). Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men -- possible therapeutic implications. Psychopharmacology (Berl), 137(3), 247-252. 64. Nielsen, F. H., Johnson, L. K., & Zeng, H. (2010). Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res, 23(4), 158-168. doi:10.1684/mrh.2010.0220

Reason: More than 50 percent of your brain is comprised of DHA! Among a big group of elderly Americans, those with the highest blood levels of DHA were about half as apt to develop dementia and 39% as apt to develop Alzheimer’s as those with lower blood levels of DHA over a nine-year period. The top 25% of those with the highest blood DHA got about 180 mg DHA a day or three servings of fish a week, researchers said. In this study, the other major fatty acid in fish oil. EPA had no effect.

Nootropics include natural and manmade chemicals that produce cognitive benefits. These substances are used to make smart pills that deliver results for enhancing memory and learning ability, improving brain function, enhancing the firing control mechanisms in neurons, and providing protection for the brain. College students, adult professionals, and elderly people are turning to supplements to get the advantages of nootropic substances for memory, focus, and concentration.


Now, what is the expected value (EV) of simply taking iodine, without the additional work of the experiment? 4 cans of 0.15mg x 200 is $20 for 2.1 years’ worth or ~$10 a year or a NPV cost of $205 (\frac{10}{\ln 1.05}) versus a 20% chance of $2000 or $400. So the expected value is greater than the NPV cost of taking it, so I should start taking iodine.
Spinach is rich in the antioxidant lutein, which is thought to help protect against cognitive decline, according to researchers from Tufts University. And a longitudinal study at Harvard Medical School found that women who reported eating the most leafy green and cruciferous vegetables had a markedly lower rate of cognitive decline, compared to those who ate the least.
The main concern with pharmaceutical drugs is adverse effects, which also apply to nootropics with undefined effects. Long-term safety evidence is typically unavailable for nootropics.[13] Racetams — piracetam and other compounds that are structurally related to piracetam — have few serious adverse effects and low toxicity, but there is little evidence that they enhance cognition in people having no cognitive impairments.[19]
×