The effect? 3 or 4 weeks later, I’m not sure. When I began putting all of my nootropic powders into pill-form, I put half a lithium pill in each, and nevertheless ran out of lithium fairly quickly (3kg of piracetam makes for >4000 OO-size pills); those capsules were buried at the bottom of the bucket under lithium-less pills. So I suddenly went cold-turkey on lithium. Reflecting on the past 2 weeks, I seem to have been less optimistic and productive, with items now lingering on my To-Do list which I didn’t expect to. An effect? Possibly.
If you are a slow caffeine metabolizer and consume too much caffeine, you run the risk of mild to severe complications, such as cardiovascular disease. There’s also the sleep disruption problem of having too much caffeine left in your bloodstream late in the day as a result of a longer caffeine half-life, a problem not faced by fast caffeine metabolizers (it’s so unfair if you love your cup of joe, right?). In addition, fast caffeine metabolizers actually run a reduced risk of cardiovascular complications if they consume at least one cup of coffee per day. While anyone can be a slow caffeine metabolizer, there are certain ethnic backgrounds that are indeed associated with slower and faster caffeine metabolisms. For example, it’s known that people with Asian and African ethnic backgrounds generally have slower rates of caffeine metabolism. To find out if you’re a fast or slow caffeine metabolizer, you can have a relatively inexpensive salivary genetic test performed by a company like 23andme and then use the online dashboard to jump straight to your CYP1A2 gene. When you’re there, you type into the search bar “rs762551”. If your rs762551 SNP variant is AA, then you’re a fast caffeine metabolizer, but if your variant is AC or CC, you’re a slow caffeine metabolizer. Fortunately, many genetic testing companies will now simply report directly on your results whether you’re a slow or fast metabolizer, without you needing to go through the SNP searching trouble.
I'm not mad, I'm disappointed. This product did not work at all. It didn't even feel like it was just a caffeine pill (usually what supplements that don't work are actually made of). It literally does nothing. In hindsight, I feel like I did when I was a kid and ordered $4.50 X-ray sunglasses from the back of a comic book. Deep down knew it was too good to be true, but secretly I hoped it would work. Shame on me for getting sucked into a bunch of hype.
Caffeine dose dependently decreased the 1,25(OH)(2)D(3) induced VDR expression and at concentrations of 1 and 10mM, VDR expression was decreased by about 50-70%, respectively. In addition, the 1,25(OH)(2)D(3) induced alkaline phosphatase activity was also reduced at similar doses thus affecting the osteoblastic function. The basal ALP activity was not affected with increasing doses of caffeine. Overall, our results suggest that caffeine affects 1,25(OH)(2)D(3) stimulated VDR protein expression and 1,25(OH)(2)D(3) mediated actions in human osteoblast cells.
Your mileage will vary. There are so many parameters and interactions in the brain that any of them could be the bottleneck or responsible pathway, and one could fall prey to the common U-shaped dose-response curve (eg. Yerkes-Dodson law; see also Chemistry of the adaptive mind & de Jongh et al 2007) which may imply that the smartest are those who benefit least23 but ultimately they all cash out in a very few subjective assessments like energetic or motivated, with even apparently precise descriptions like working memory or verbal fluency not telling you much about what the nootropic actually did. It’s tempting to list the nootropics that worked for you and tell everyone to go use them, but that is merely generalizing from one example (and the more nootropics - or meditation styles, or self-help books, or getting things done systems - you try, the stronger the temptation is to evangelize). The best you can do is read all the testimonials and studies and use that to prioritize your list of nootropics to try. You don’t know in advance which ones will pay off and which will be wasted. You can’t know in advance. And wasted some must be; to coin a Umeshism: if all your experiments work, you’re just fooling yourself. (And the corollary - if someone else’s experiments always work, they’re not telling you everything.)

Farah questions the idea that neuroenhancers will expand inequality. Citing the "pretty clear trend across the studies that say neuroenhancers will be less helpful for people who score above average", she said that cognitive-enhancing pills could actually become levellers if they are dispensed cheaply. A 2007 discussion paper published by the British Medical Association (BMA) also makes this point: "Selective use of neuroenhancers among those with lower intellectual capacity, or those from deprived backgrounds who do not have the benefit of additional tuition, could enhance the educational opportunities for those groups." If the idea of giving a pill as a substitute for better teaching seems repellent - like substituting an IV drip of synthetic nutrition for actual food - it may be preferable to a scenario in which only wealthy kids receive a frequent mental boost.
Cephalon executives have repeatedly said that they do not condone off-label use of Provigil, but in 2002 the company was reprimanded by the FDA for distributing marketing materials that presented the drug as a remedy for tiredness, "decreased activity" and other supposed ailments. And in 2008 Cephalon paid $425m and pleaded guilty to a federal criminal charge relating to its promotion of off-label uses for Provigil and two other drugs. Later this year, Cephalon plans to introduce Nuvigil, a longer-lasting variant of Provigil. Candace Steele, a spokesperson, said: "We're exploring its possibilities to treat excessive sleepiness associated with schizophrenia, bipolar depression, traumatic injury and jet lag." Though she emphasised that Cephalon was not developing Nuvigil as a neuroenhancer, she noted: "As part of the preparation for some of these diseases, we're looking to see if there's improvement in cognition."
Nuts and seeds. Nuts and seeds are good sources of vitamin E, says Pratt, explaining that higher levels of vitamin E correspond with less cognitive decline as you get older. Add an ounce a day of walnuts, hazelnuts, Brazil nuts, filberts, almonds, cashews, peanuts, sunflower seeds, sesame seeds, flax seed, and unhydrogenated nut butters such as peanut butter, almond butter, and tahini. Raw or roasted doesn't matter, although if you're on a sodium-restricted diet, buy unsalted nuts.
Take at 11 AM; distractions ensue and the Christmas tree-cutting also takes up much of the day. By 7 PM, I am exhausted and in a bad mood. While I don’t expect day-time modafinil to buoy me up, I do expect it to at least buffer me against being tired, and so I conclude placebo this time, and with more confidence than yesterday (65%). I check before bed, and it was placebo.
A pastor named John Piper said it well, “If hearing about God’s judgment makes it harder for us to love God, then probably the God we love is a figment of our imagination and not the real and true God. If we would love the true God, we must know the true God. There is something wrong with our faith if we cannot sing praises to God not only as our loving Father but also as the righteous Judge of all the earth.”

Adaptogens are also known to participate in regulating homeostasis through helping to beneficially regulate the mechanisms of action associated with the HPA-axis (think back to the importance of proper HPA-axis function which you learned about in my last article on breathwork), including cortisol regulation and nitric oxide regulation. Through these mechanisms, they can protect against chronic inflammation, atherosclerosis, neurodegenerative cognitive impairment, metabolic disorders, cancer and other aging-related diseases. There are plenty of adaptogens with potent benefits, but the ones you learn about in this article are an excellent start to begin building or expanding your stress-adaptation toolbox.

As professionals and aging baby boomers alike become more interested in enhancing their own brain power (either to achieve more in a workday or to stave off cognitive decline), a huge market has sprung up for nonprescription nootropic supplements. These products don’t convince Sahakian: “As a clinician scientist, I am interested in evidence-based cognitive enhancement,” she says. “Many companies produce supplements, but few, if any, have double-blind, placebo-controlled studies to show that these supplements are cognitive enhancers.” Plus, supplements aren’t regulated by the U.S. Food and Drug Administration (FDA), so consumers don’t have that assurance as to exactly what they are getting. Check out these 15 memory exercises proven to keep your brain sharp.


To thwart the rise of non-prescription nootropics, opponents may rally for increased regulation; however, at present, there is insufficient research available to support that non-prescription nootropics pose a danger to public health. Prescription nootropics, such as Ritalin, are already regulated. Further, these drugs have a proven beneficial treatment purpose for intended users.
If I assume that the coefficient of +1.22 for as.logical(Magnesium.citrate)TRUE’s effect on MP in the previous analysis represents the true causal effect of 0.156g elemental magnesium without any overdose involved and that magnesium would have a linear increase (up until overdose), then one might argue that optimistically 0.078 would cause an increase of ~0.61. Or one could eyeball the graph and note that the LOESS lines look like at the magnesium peak improved by <+0.5 over the long-run baseline of ~3 Then one could do a power estimate with those 2 estimates.
Thursday: 3g piracetam/4g choline bitartrate at 1; 1 200mg modafinil at 2:20; noticed a leveling of fatigue by 3:30; dry eyes? no bad after taste or anything. a little light-headed by 4:30, but mentally clear and focused. wonder if light-headedness is due simply to missing lunch and not modafinil. 5:43: noticed my foot jiggling - doesn’t usually jiggle while in piracetam/choline. 7:30: starting feeling a bit jittery & manic - not much or to a problematic level but definitely noticeable; but then, that often happens when I miss lunch & dinner. 12:30: bedtime. Can’t sleep even with 3mg of melatonin! Subjectively, I toss & turn (in part thanks to my cat) until 4:30, when I really wake up. I hang around bed for another hour & then give up & get up. After a shower, I feel fairly normal, strangely, though not as good as if I had truly slept 8 hours. The lesson here is to pay attention to wikipedia when it says the half-life is 12-15 hours! About 6AM I take 200mg; all the way up to 2pm I feel increasingly less energetic and unfocused, though when I do apply myself I think as well as ever. Not fixed by food or tea or piracetam/choline. I want to be up until midnight, so I take half a pill of 100mg and chew it (since I’m not planning on staying up all night and I want it to work relatively soon). From 4-12PM, I notice that today as well my heart rate is elevated; I measure it a few times and it seems to average to ~70BPM, which is higher than normal, but not high enough to concern me. I stay up to midnight fine, take 3mg of melatonin at 12:30, and have no trouble sleeping; I think I fall asleep around 1. Alarm goes off at 6, I get up at 7:15 and take the other 100mg. Only 100mg/half-a-pill because I don’t want to leave the half laying around in the open, and I’m curious whether 100mg + ~5 hours of sleep will be enough after the last 2 days. Maybe next weekend I’ll just go without sleep entirely to see what my limits are.
Attention Deficit and Hyperactivity Disorder (ADHD) is a condition that relates to a collection of behavioural symptoms such as hyperactivity, impulsiveness and inattentiveness. It is most commonly diagnosed in childhood between the ages of 6 and 12 when disruptive behaviour begins to show, however, due to a growing awareness of the condition, it is also becoming common among adults. According to the thinktank Demos, the cost of undiagnosed ADHD in adults in the UK who are unable to work or hold down a full-time job are estimated to cost billions of pounds to the nation. They warn that too many may be going through life struggling, unable to access the support ot diagnosis they need, which means there could be a huge amount of wasted talent.
Powders are good for experimenting with (easy to vary doses and mix), but not so good for regular taking. I use OO gel capsules with a Capsule Machine: it’s hard to beat $20, it works, it’s not that messy after practice, and it’s not too bad to do 100 pills. However, I once did 3kg of piracetam + my other powders, and doing that nearly burned me out on ever using capsules again. If you’re going to do that much, something more automated is a serious question! (What actually wound up infuriating me the most was when capsules would stick in either the bottom or top try - requiring you to very gingerly pull and twist them out, lest the two halves slip and spill powder - or when the two halves wouldn’t lock and you had to join them by hand. In contrast: loading the gel caps could be done automatically without looking, after some experience.)

She reveals where she went astray. In a lecture she gave, she lamented the failure of science to offer a cure for Alzheimer’s or even an effective treatment. Someone in the audience asked, “How about olive oil?” She realized she didn’t know anything about the effects of nutrition on Alzheimer’s. She seems to have assumed that diet must be crucially important, and for some reason instead of studying conventional nutrition science, she got a degree in Holistic Nutrition. She bills herself as a certified Integrative Nutritionist and holistic healthcare practitioner. I couldn’t find where she studied, but Stephen Barrett has criticized the Institute for Integrative Nutrition on Quackwatch. Its training is not based on scientific nutrition. It seems most programs in Integrative Nutrition are 6- to 8-month correspondence courses with no prerequisites. I wonder what she was taught.
I do recommend a few things, like modafinil or melatonin, to many adults, albeit with misgivings about any attempt to generalize like that. (It’s also often a good idea to get powders, see the appendix.) Some of those people are helped; some have told me that they tried and the suggestion did little or nothing. I view nootropics as akin to a biological lottery; one good discovery pays for all. I forge on in the hopes of further striking gold in my particular biology. Your mileage will vary. All you have to do, all you can do is to just try it. Most of my experiences were in my 20s as a right-handed 5’11 white male weighing 190-220lbs, fitness varying over time from not-so-fit to fairly fit. In rough order of personal effectiveness weighted by costs+side-effects, I rank them as follows:

The single most reliable way to protect our brain cells as we age, most researchers agree, is to eat plenty of fruits and vegetables, which are chock-full of antioxidants and nutrients. In a study published in the October 1997 issue of the American Journal of Clinical Nutrition, researchers tested 260 people aged 65 to 90 with a series of mental exercises that involved memorizing words or doing mental arithmetic. The top performers were those who consumed the most fruits and vegetables and ate the least artery-clogging saturated fat.
Adderall is composed of a mixture of amphetamine salts – chemical compounds that have numerous potentially positive effects, including increased concentration, awareness and alertness. Amphetamines work, in part, by causing the release of dopamine, a neurotransmitter associated with pleasurable activities like eating. However, an amphetamine-induced release of dopamine occurs automatically – no pleasurable activity needs to occur – but a come-down feeling will likely be experienced eventually, which is associated with feelings of lethargy and mental dullness. Due to this side effect, Adderall cannot be said to be a nootropic.[12]
1. Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T., & Nathan, P. J. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl), 156(4), 481-484. 2. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complementary and Alternative Medicine, 12(1), 70. doi:10.1186/1472-6882-12-703. Pase, M. P., Kean, J., Sarris, J., Neale, C., Scholey, A. B., & Stough, C. (2012). The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med, 18(7), 647-652. doi:10.1089/acm.2011.03674. Raghav, S., Singh, H., Dalal, P. K., Srivastava, J. S., & Asthana, O. P. (2006). Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry, 48(4), 238-242. doi:10.4103/0019-5545.315555. Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2013). Cognitive effects of two nutraceuticals Ginseng and Bacopa [...]: a review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75(3), 728-737. doi:10.1111/bcp.120026. Prynne, C. J., Thane, C. W., Prentice, A., & Wadsworth, M. E. (2005). Intake and sources of phylloquinone (vitamin K(1)) in 4-year-old British children: comparison between 1950 and the 1990s. Public Health Nutr, 8(2), 171-180.7. Ferland, G. (2012). Vitamin K and the nervous system: an overview of its actions. Adv Nutr, 3(2), 204-212. doi:10.3945/an.111.0017848. Zeidan, Y. H., & Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends in molecular medicine, 13(8), 327-336.9. Beulens, J. W., Bots, M. L., Atsma, F., Bartelink, M. L., Prokop, M., Geleijnse, J. M., . . . van der Schouw, Y. T. (2009). High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis, 203(2), 489-493. doi:10.1016/j.atherosclerosis.2008.07.01010. Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H., van der Meer, I. M., . . . Witteman, J. C. (2004). Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr, 134(11), 3100-3105.11. Theuwissen, E., Magdeleyns, E. J., Braam, L. A., Teunissen, K. J., Knapen, M. H., Binnekamp, I. A., . . . Vermeer, C. (2014). Vitamin K status in healthy volunteers. Food Funct, 5(2), 229-234. doi:10.1039/c3fo60464k12. Barros, M. P., Poppe, S. C., & Bondan, E. F. (2014). Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients, 6(3), 1293-1317.13. Pashkow, F. J., Watumull, D. G., & Campbell, C. L. (2008). Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 101(10a), 58d-68d. doi:10.1016/j.amjcard.2008.02.01014. Annweiler, C., Schott, A. M., Berrut, G., Chauvire, V., Le Gall, D., Inzitari, M., & Beauchet, O. (2010). Vitamin D and ageing: neurological issues. Neuropsychobiology, 62(3), 139-150. doi:10.1159/00031857015. Brown, J., Bianco, J. I., McGrath, J. J., & Eyles, D. W. (2003). 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett, 343(2), 139-143.16. Naveilhan, P., Neveu, I., Wion, D., & Brachet, P. (1996). 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 7(13), 2171-2175.17. Tangpricha, V., Pearce, E. N., Chen, T. C., & Holick, M. F. (2002). Vitamin D insufficiency among free-living healthy young adults. Am J Med, 112(8), 659-662.18. Annweiler, C., Allali, G., Allain, P., Bridenbaugh, S., Schott, A. M., Kressig, R. W., & Beauchet, O. (2009). Vitamin D and cognitive performance in adults: a systematic review. European Journal of Neurology, 16(10), 1083-1089. doi:10.1111/j.1468-1331.2009.02755.x19. Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., Richard-Devantoy, S., Duque, G., & Beauchet, O. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis, 37(1), 147-171. doi:10.3233/jad-13045220. Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., . . . Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology, 79(13), 1397-1405.21. Dean, A. J., Bellgrove, M. A., Hall, T., Phan, W. M. J., Eyles, D. W., Kvaskoff, D., & McGrath, J. J. (2011). Effects of Vitamin D Supplementation on Cognitive and Emotional Functioning in Young Adults – A Randomised Controlled Trial. PLoS One, 6(11), e25966. doi:10.1371/journal.pone.002596622. Etgen, T., Sander, D., Bickel, H., Sander, K., & Forstl, H. (2012). Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord, 33(5), 297-305. doi:10.1159/00033970223. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest, 35(11), 691-699. doi:10.1111/j.1365-2362.2005.01570.x24. Huhn, S., Masouleh, S. K., Stumvoll, M., Villringer, A., & Witte, A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Frontiers in aging neuroscience, 7.25. Bradbury, J. (2011). Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients, 3(5), 529-554. doi:10.3390/nu305052926. Einother, S. J., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl), 225(2), 251-274. doi:10.1007/s00213-012-2917-427. Johnson, L. C., Spinweber, C. L., & Gomez, S. A. (1990). Benzodiazepines and caffeine: effect on daytime sleepiness, performance, and mood. Psychopharmacology (Berl), 101(2), 160-167. 28. Smith, A., Kendrick, A., Maben, A., & Salmon, J. (1994). Effects of breakfast and caffeine on cognitive performance, mood and cardiovascular functioning. Appetite, 22(1), 39-55. doi:10.1006/appe.1994.100429. Smith, A. P., Kendrick, A. M., & Maben, A. L. (1992). Effects of breakfast and caffeine on performance and mood in the late morning and after lunch. Neuropsychobiology, 26(4), 198-204. doi:11892030. Smith, B. D., Davidson, R. A., & Green, R. L. (1993). Effects of caffeine and gender on physiology and performance: further tests of a biobehavioral model. Physiol Behav, 54(3), 415-422. 31. Warburton, D. M. (1995). Effects of caffeine on cognition and mood without caffeine abstinence. Psychopharmacology (Berl), 119(1), 66-70. 32. Wilhelmus, M. M., Hay, J. L., Zuiker, R. G., Okkerse, P., Perdrieu, C., Sauser, J., . . . Silber, B. Y. (2017). Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects. J Psychopharmacol, 31(2), 222-232. doi:10.1177/026988111666859333. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 51(1), 83-133. 34. Borzelleca, J. F., Peters, D., & Hall, W. (2006). A 13-week dietary toxicity and toxicokinetic study with l-theanine in rats. Food Chem Toxicol, 44(7), 1158-1166. doi:10.1016/j.fct.2006.03.01435. Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). L-Theanine reduces psychological and physiological stress responses. Biol Psychol, 74(1), 39-45. doi:10.1016/j.biopsycho.2006.06.00636. Tian, X., Sun, L., Gou, L., Ling, X., Feng, Y., Wang, L., . . . Liu, Y. (2013). Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res, 1503, 24-32. doi:10.1016/j.brainres.2013.01.04837. Unno, K., Fujitani, K., Takamori, N., Takabayashi, F., Maeda, K., Miyazaki, H., . . . Hoshino, M. (2011). Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice. Free Radic Res, 45(8), 966-974. doi:10.3109/10715762.2011.56686938. Unno, K., Tanida, N., Ishii, N., Yamamoto, H., Iguchi, K., Hoshino, M., . . . Yamada, H. (2013). Anti-stress effect of theanine on students during pharmacy practice: positive correlation among salivary alpha-amylase activity, trait anxiety and subjective stress. Pharmacol Biochem Behav, 111, 128-135. doi:10.1016/j.pbb.2013.09.00439. Dodd, F. L., Kennedy, D. O., Riby, L. M., & Haskell-Ramsay, C. F. (2015a). A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood. Psychopharmacology (Berl), 232(14), 2563-2576. doi:10.1007/s00213-015-3895-040. Rogers, P. J., Smith, J. E., Heatherley, S. V., & Pleydell-Pearce, C. W. (2008). Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology (Berl), 195(4), 569-577. doi:10.1007/s00213-007-0938-141. Foxe, J. J., Morie, K. P., Laud, P. J., Rowson, M. J., de Bruin, E. A., & Kelly, S. P. (2012). Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology, 62(7), 2320-2327. doi:10.1016/j.neuropharm.2012.01.02042. Giesbrecht, T., Rycroft, J. A., Rowson, M. J., & De Bruin, E. A. (2010). The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness. Nutr Neurosci, 13(6), 283-290. doi:10.1179/147683010x1261146076484043. Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol, 77(2), 113-122. doi:10.1016/j.biopsycho.2007.09.00844. Kahathuduwa, C. N., Dassanayake, T. L., Amarakoon, A. M., & Weerasinghe, V. S. (2016). Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr Neurosci. doi:10.1080/1028415x.2016.114484545. Owen, G. N., Parnell, H., De Bruin, E. A., & Rycroft, J. A. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutr Neurosci, 11(4), 193-198. doi:10.1179/147683008x30151346. Einother, S. J., Martens, V. E., Rycroft, J. A., & De Bruin, E. A. (2010). L-theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite, 54(2), 406-409. doi:10.1016/j.appet.2010.01.00347. Deijen, J. B., van der Beek, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology (Berl), 109(4), 489-496.48. Lewerin, C., Matousek, M., Steen, G., Johansson, B., Steen, B., & Nilsson-Ehle, H. (2005). Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr, 81(5), 1155-1162. 49. Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr, 132(6), 1345-1356. 50. Schneider, Z., & Stroinski, A. (1987). Comprehensive B12: chemistry, biochemistry, nutrition, ecology, medicine: Walter de Gruyter.51. Polich, J., & Gloria, R. (2001). Cognitive effects of a Ginkgo biloba/vinpocetine compound in normal adults: systematic assessment of perception, attention and memory. Hum Psychopharmacol, 16(5), 409-416. doi:10.1002/hup.30852. Subhan, Z., & Hindmarch, I. (1985). Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol, 28(5), 567-571. 53. Dollins, A. B., Krock, L. P., Storm, W. F., Wurtman, R. J., & Lieberman, H. R. (1995). L-tyrosine ameliorates some effects of lower body negative pressure stress. Physiol Behav, 57(2), 223-230. 54. Shurtleff, D., Thomas, J. R., Schrot, J., Kowalski, K., & Harford, R. (1994). Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol Biochem Behav, 47(4), 935-941. 55. Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., & Ford, I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev, 9(1), 41-50. 56. Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-Analysis: Melatonin for the Treatment of Primary Sleep Disorders. PLoS One, 8(5), e63773. doi:10.1371/journal.pone.006377357. Inagawa, K., Hiraoka, T., Kohda, T., Yamadera, W., & Takahashi, M. (2006). Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep and Biological Rhythms, 4(1), 75-77. doi:10.1111/j.1479-8425.2006.00193.x58. Bannai, M., Kawai, N., Ono, K., Nakahara, K., & Murakami, N. (2012). The Effects of Glycine on Subjective Daytime Performance in Partially Sleep-Restricted Healthy Volunteers. Front Neurol, 3, 61. doi:10.3389/fneur.2012.0006159. Yamadera, W., Inagawa, K., Chiba, S., Bannai, M., Takahashi, M., & Nakayama, K. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms, 5(2), 126-131. doi:10.1111/j.1479-8425.2007.00262.x60. Tuli, H. S., Kashyap, D., Sharma, A. K., & Sandhu, S. S. (2015). Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci, 135, 147-157. doi:10.1016/j.lfs.2015.06.00461. Herxheimer, A., & Petrie, K. J. (2002). Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev(2), Cd001520. doi:10.1002/14651858.cd00152062. Deng, X., Song, Y., Manson, J. E., Signorello, L. B., Zhang, S. M., Shrubsole, M. J., . . . Dai, Q. (2013). Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 11(1), 187. doi:10.1186/1741-7015-11-18763. Murck, H., & Steiger, A. (1998). Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men -- possible therapeutic implications. Psychopharmacology (Berl), 137(3), 247-252. 64. Nielsen, F. H., Johnson, L. K., & Zeng, H. (2010). Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res, 23(4), 158-168. doi:10.1684/mrh.2010.0220

But, thanks to the efforts of a number of remarkable scientists, researchers and plain-old neurohackers, we are beginning to put together a “whole systems” model of how all the different parts of the human brain work together and how they mesh with the complex regulatory structures of the body. It’s going to take a lot more data and collaboration to dial this model in, but already we are empowered to design stacks that can meaningfully deliver on the promise of nootropics “to enhance the quality of subjective experience and promote cognitive health, while having extremely low toxicity and possessing very few side effects.” It’s a type of brain hacking that is intended to produce noticeable cognitive benefits.
×