There are many studies that suggest that Creatine helps in treating cognitive decline in individuals when combined with other therapies. It also helps people suffering from Parkinsons and Huntingtons disease. Though there are minimal side effects associated with creatine, pretty much like any nootropic, it is not  absolutely free of side-effects. An overdose of creatine can lead to gastrointestinal issues, weight gain, stress and anxiety.

After 7 days, I ordered a kg of choline bitartrate from Bulk Powders. Choline is standard among piracetam-users because it is pretty universally supported by anecdotes about piracetam headaches, has support in rat/mice experiments28, and also some human-related research. So I figured I couldn’t fairly test piracetam without some regular choline - the eggs might not be enough, might be the wrong kind, etc. It has a quite distinctly fishy smell, but the actual taste is more citrus-y, and it seems to neutralize the piracetam taste in tea (which makes things much easier for me).
However, as a result of the efficacy of this type of stacking, the supplement world is saturated with brain-boosting blends, and it can be difficult to cut through the confusion and figure out what really works and what could be a waste of time and money, or downright dangerous. The fact is, when creating your own stack, you must carefully think about your specific needs and goals. For example, if you want to reduce anxiety and depression, but don’t necessarily care to enhance your cognitive performance or get through a day of work in a sleep-deprived state, you could just stick to a single nootropic that increases dopamine levels, such as Mucuna pruriens or tryptophan. Or if you wanted to reduce anxiety and depression while simultaneously improving your memory because you’re studying for a school or work exam, you could add Bacopa monnieri to the mucuna or tryptophan. Then, let’s say you want long-term cognitive performance to the mix that lasts an entire day: in this case, you’d add a racetam, and to avoid an end of day crash, a touch of choline or DHA. It’s a bit like cooking in the kitchen, isn’t it?

The effects of piracetam on healthy volunteers have been studied even less than those of Adderall or modafinil. Most peer-reviewed studies focus on its effects on dementia or on people who have suffered a seizure or a concussion. Many of the studies that look at other neurological effects were performed on rats and mice. Piracetam's mechanisms of action are not understood, though it may increase levels of the neurotransmitter acetylcholine. In 2008 a committee of the British Academy of Medical Sciences noted that many of the clinical trials of piracetam for dementia were methodologically flawed. Another published review of the available studies of the drug concluded that the evidence "does not support the use of piracetam in the treatment of people with dementia or cognitive impairment", but suggested that further investigation might be warranted. I asked Seltzer if he thought he should wait for scientific ratification of piracetam. He laughed. "I don't want to," he said. "Because it's working."


[…] The 7 Best Brain Boosting Supplements | Live in the Now … – While under estimated in the brain health arena, adequate vitamin C is associated with a 20% … If you are looking for a way to maximize brain power I have come across … […] medicines, dietary supplements and organic food products. Justin has also been writing on best brain supplements for … […]
To thwart the rise of non-prescription nootropics, opponents may rally for increased regulation; however, at present, there is insufficient research available to support that non-prescription nootropics pose a danger to public health. Prescription nootropics, such as Ritalin, are already regulated. Further, these drugs have a proven beneficial treatment purpose for intended users.

After informally testing various formulas of Qualia OS on themselves and friends, Collective founders did an unblinded pilot study with nine volunteers that Dr. Stickler says showed significant benefits in cognitive function and stress response in eight of the subjects. Still, he admits this isn’t airtight scientific proof that the product works. He says the Collective is hoping to do a placebo-controlled study, but in the meantime, he’s confident the stack works because of the results he’s seen in patients.
She repeats the oft-refuted advice to drink at least 8 glasses of water a day. She claims that drinking water improves cognitive performance. Her citation for that claim is a small study in which participants were instructed to fast overnight and not eat or drink anything after 9 pm, so they were presumably somewhat dehydrated. There is no evidence that people who are not dehydrated benefit from increasing water intake.
I have a needle phobia, so injections are right out; but from the images I have found, it looks like testosterone enanthate gels using DMSO resemble other gels like Vaseline. This suggests an easy experimental procedure: spoon an appropriate dose of testosterone gel into one opaque jar, spoon some Vaseline gel into another, and pick one randomly to apply while not looking. If one gel evaporates but the other doesn’t, or they have some other difference in behavior, the procedure can be expanded to something like and then half an hour later, take a shower to remove all visible traces of the gel. Testosterone itself has a fairly short half-life of 2-4 hours, but the gel or effects might linger. (Injections apparently operate on a time-scale of weeks; I’m not clear on whether this is because the oil takes that long to be absorbed by surrounding materials or something else.) Experimental design will depend on the specifics of the obtained substance. As a controlled substance (Schedule III in the US), supplies will be hard to obtain; I may have to resort to the Silk Road.
1. Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T., & Nathan, P. J. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl), 156(4), 481-484. 2. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complementary and Alternative Medicine, 12(1), 70. doi:10.1186/1472-6882-12-703. Pase, M. P., Kean, J., Sarris, J., Neale, C., Scholey, A. B., & Stough, C. (2012). The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med, 18(7), 647-652. doi:10.1089/acm.2011.03674. Raghav, S., Singh, H., Dalal, P. K., Srivastava, J. S., & Asthana, O. P. (2006). Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry, 48(4), 238-242. doi:10.4103/0019-5545.315555. Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2013). Cognitive effects of two nutraceuticals Ginseng and Bacopa [...]: a review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75(3), 728-737. doi:10.1111/bcp.120026. Prynne, C. J., Thane, C. W., Prentice, A., & Wadsworth, M. E. (2005). Intake and sources of phylloquinone (vitamin K(1)) in 4-year-old British children: comparison between 1950 and the 1990s. Public Health Nutr, 8(2), 171-180.7. Ferland, G. (2012). Vitamin K and the nervous system: an overview of its actions. Adv Nutr, 3(2), 204-212. doi:10.3945/an.111.0017848. Zeidan, Y. H., & Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends in molecular medicine, 13(8), 327-336.9. Beulens, J. W., Bots, M. L., Atsma, F., Bartelink, M. L., Prokop, M., Geleijnse, J. M., . . . van der Schouw, Y. T. (2009). High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis, 203(2), 489-493. doi:10.1016/j.atherosclerosis.2008.07.01010. Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H., van der Meer, I. M., . . . Witteman, J. C. (2004). Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr, 134(11), 3100-3105.11. Theuwissen, E., Magdeleyns, E. J., Braam, L. A., Teunissen, K. J., Knapen, M. H., Binnekamp, I. A., . . . Vermeer, C. (2014). Vitamin K status in healthy volunteers. Food Funct, 5(2), 229-234. doi:10.1039/c3fo60464k12. Barros, M. P., Poppe, S. C., & Bondan, E. F. (2014). Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients, 6(3), 1293-1317.13. Pashkow, F. J., Watumull, D. G., & Campbell, C. L. (2008). Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 101(10a), 58d-68d. doi:10.1016/j.amjcard.2008.02.01014. Annweiler, C., Schott, A. M., Berrut, G., Chauvire, V., Le Gall, D., Inzitari, M., & Beauchet, O. (2010). Vitamin D and ageing: neurological issues. Neuropsychobiology, 62(3), 139-150. doi:10.1159/00031857015. Brown, J., Bianco, J. I., McGrath, J. J., & Eyles, D. W. (2003). 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett, 343(2), 139-143.16. Naveilhan, P., Neveu, I., Wion, D., & Brachet, P. (1996). 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 7(13), 2171-2175.17. Tangpricha, V., Pearce, E. N., Chen, T. C., & Holick, M. F. (2002). Vitamin D insufficiency among free-living healthy young adults. Am J Med, 112(8), 659-662.18. Annweiler, C., Allali, G., Allain, P., Bridenbaugh, S., Schott, A. M., Kressig, R. W., & Beauchet, O. (2009). Vitamin D and cognitive performance in adults: a systematic review. European Journal of Neurology, 16(10), 1083-1089. doi:10.1111/j.1468-1331.2009.02755.x19. Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., Richard-Devantoy, S., Duque, G., & Beauchet, O. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis, 37(1), 147-171. doi:10.3233/jad-13045220. Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., . . . Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology, 79(13), 1397-1405.21. Dean, A. J., Bellgrove, M. A., Hall, T., Phan, W. M. J., Eyles, D. W., Kvaskoff, D., & McGrath, J. J. (2011). Effects of Vitamin D Supplementation on Cognitive and Emotional Functioning in Young Adults – A Randomised Controlled Trial. PLoS One, 6(11), e25966. doi:10.1371/journal.pone.002596622. Etgen, T., Sander, D., Bickel, H., Sander, K., & Forstl, H. (2012). Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord, 33(5), 297-305. doi:10.1159/00033970223. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest, 35(11), 691-699. doi:10.1111/j.1365-2362.2005.01570.x24. Huhn, S., Masouleh, S. K., Stumvoll, M., Villringer, A., & Witte, A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Frontiers in aging neuroscience, 7.25. Bradbury, J. (2011). Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients, 3(5), 529-554. doi:10.3390/nu305052926. Einother, S. J., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl), 225(2), 251-274. doi:10.1007/s00213-012-2917-427. Johnson, L. C., Spinweber, C. L., & Gomez, S. A. (1990). Benzodiazepines and caffeine: effect on daytime sleepiness, performance, and mood. Psychopharmacology (Berl), 101(2), 160-167. 28. Smith, A., Kendrick, A., Maben, A., & Salmon, J. (1994). Effects of breakfast and caffeine on cognitive performance, mood and cardiovascular functioning. Appetite, 22(1), 39-55. doi:10.1006/appe.1994.100429. Smith, A. P., Kendrick, A. M., & Maben, A. L. (1992). Effects of breakfast and caffeine on performance and mood in the late morning and after lunch. Neuropsychobiology, 26(4), 198-204. doi:11892030. Smith, B. D., Davidson, R. A., & Green, R. L. (1993). Effects of caffeine and gender on physiology and performance: further tests of a biobehavioral model. Physiol Behav, 54(3), 415-422. 31. Warburton, D. M. (1995). Effects of caffeine on cognition and mood without caffeine abstinence. Psychopharmacology (Berl), 119(1), 66-70. 32. Wilhelmus, M. M., Hay, J. L., Zuiker, R. G., Okkerse, P., Perdrieu, C., Sauser, J., . . . Silber, B. Y. (2017). Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects. J Psychopharmacol, 31(2), 222-232. doi:10.1177/026988111666859333. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 51(1), 83-133. 34. Borzelleca, J. F., Peters, D., & Hall, W. (2006). A 13-week dietary toxicity and toxicokinetic study with l-theanine in rats. Food Chem Toxicol, 44(7), 1158-1166. doi:10.1016/j.fct.2006.03.01435. Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). L-Theanine reduces psychological and physiological stress responses. Biol Psychol, 74(1), 39-45. doi:10.1016/j.biopsycho.2006.06.00636. Tian, X., Sun, L., Gou, L., Ling, X., Feng, Y., Wang, L., . . . Liu, Y. (2013). Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res, 1503, 24-32. doi:10.1016/j.brainres.2013.01.04837. Unno, K., Fujitani, K., Takamori, N., Takabayashi, F., Maeda, K., Miyazaki, H., . . . Hoshino, M. (2011). Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice. Free Radic Res, 45(8), 966-974. doi:10.3109/10715762.2011.56686938. Unno, K., Tanida, N., Ishii, N., Yamamoto, H., Iguchi, K., Hoshino, M., . . . Yamada, H. (2013). Anti-stress effect of theanine on students during pharmacy practice: positive correlation among salivary alpha-amylase activity, trait anxiety and subjective stress. Pharmacol Biochem Behav, 111, 128-135. doi:10.1016/j.pbb.2013.09.00439. Dodd, F. L., Kennedy, D. O., Riby, L. M., & Haskell-Ramsay, C. F. (2015a). A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood. Psychopharmacology (Berl), 232(14), 2563-2576. doi:10.1007/s00213-015-3895-040. Rogers, P. J., Smith, J. E., Heatherley, S. V., & Pleydell-Pearce, C. W. (2008). Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology (Berl), 195(4), 569-577. doi:10.1007/s00213-007-0938-141. Foxe, J. J., Morie, K. P., Laud, P. J., Rowson, M. J., de Bruin, E. A., & Kelly, S. P. (2012). Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology, 62(7), 2320-2327. doi:10.1016/j.neuropharm.2012.01.02042. Giesbrecht, T., Rycroft, J. A., Rowson, M. J., & De Bruin, E. A. (2010). The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness. Nutr Neurosci, 13(6), 283-290. doi:10.1179/147683010x1261146076484043. Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol, 77(2), 113-122. doi:10.1016/j.biopsycho.2007.09.00844. Kahathuduwa, C. N., Dassanayake, T. L., Amarakoon, A. M., & Weerasinghe, V. S. (2016). Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr Neurosci. doi:10.1080/1028415x.2016.114484545. Owen, G. N., Parnell, H., De Bruin, E. A., & Rycroft, J. A. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutr Neurosci, 11(4), 193-198. doi:10.1179/147683008x30151346. Einother, S. J., Martens, V. E., Rycroft, J. A., & De Bruin, E. A. (2010). L-theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite, 54(2), 406-409. doi:10.1016/j.appet.2010.01.00347. Deijen, J. B., van der Beek, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology (Berl), 109(4), 489-496.48. Lewerin, C., Matousek, M., Steen, G., Johansson, B., Steen, B., & Nilsson-Ehle, H. (2005). Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr, 81(5), 1155-1162. 49. Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr, 132(6), 1345-1356. 50. Schneider, Z., & Stroinski, A. (1987). Comprehensive B12: chemistry, biochemistry, nutrition, ecology, medicine: Walter de Gruyter.51. Polich, J., & Gloria, R. (2001). Cognitive effects of a Ginkgo biloba/vinpocetine compound in normal adults: systematic assessment of perception, attention and memory. Hum Psychopharmacol, 16(5), 409-416. doi:10.1002/hup.30852. Subhan, Z., & Hindmarch, I. (1985). Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol, 28(5), 567-571. 53. Dollins, A. B., Krock, L. P., Storm, W. F., Wurtman, R. J., & Lieberman, H. R. (1995). L-tyrosine ameliorates some effects of lower body negative pressure stress. Physiol Behav, 57(2), 223-230. 54. Shurtleff, D., Thomas, J. R., Schrot, J., Kowalski, K., & Harford, R. (1994). Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol Biochem Behav, 47(4), 935-941. 55. Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., & Ford, I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev, 9(1), 41-50. 56. Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-Analysis: Melatonin for the Treatment of Primary Sleep Disorders. PLoS One, 8(5), e63773. doi:10.1371/journal.pone.006377357. Inagawa, K., Hiraoka, T., Kohda, T., Yamadera, W., & Takahashi, M. (2006). Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep and Biological Rhythms, 4(1), 75-77. doi:10.1111/j.1479-8425.2006.00193.x58. Bannai, M., Kawai, N., Ono, K., Nakahara, K., & Murakami, N. (2012). The Effects of Glycine on Subjective Daytime Performance in Partially Sleep-Restricted Healthy Volunteers. Front Neurol, 3, 61. doi:10.3389/fneur.2012.0006159. Yamadera, W., Inagawa, K., Chiba, S., Bannai, M., Takahashi, M., & Nakayama, K. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms, 5(2), 126-131. doi:10.1111/j.1479-8425.2007.00262.x60. Tuli, H. S., Kashyap, D., Sharma, A. K., & Sandhu, S. S. (2015). Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci, 135, 147-157. doi:10.1016/j.lfs.2015.06.00461. Herxheimer, A., & Petrie, K. J. (2002). Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev(2), Cd001520. doi:10.1002/14651858.cd00152062. Deng, X., Song, Y., Manson, J. E., Signorello, L. B., Zhang, S. M., Shrubsole, M. J., . . . Dai, Q. (2013). Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 11(1), 187. doi:10.1186/1741-7015-11-18763. Murck, H., & Steiger, A. (1998). Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men -- possible therapeutic implications. Psychopharmacology (Berl), 137(3), 247-252. 64. Nielsen, F. H., Johnson, L. K., & Zeng, H. (2010). Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res, 23(4), 158-168. doi:10.1684/mrh.2010.0220
Often her language is not that of a scientist. She uses buzzwords like detoxification and boosting the immune system. She avoids GMOs and things that she thinks are unnatural like “manufactured” minerals and salts. She says she takes royal jelly daily for its natural antibiotic effects; she says these effects are “known, but perhaps not scientifically confirmed.” If not scientifically confirmed, how are the effects “known”? She says plants produce phytonutrients to increase their life span, and then she leaps to the conclusion that humans will derive the same benefits from eating the plants.
Beans. Beans are "under-recognized" and "economical," says Kulze. They also stabilize glucose (blood sugar) levels. The brain is dependent on glucose for fuel, Kulze explains, and since it can't store the glucose, it relies on a steady stream of energy -- which beans can provide. Any beans will do, says Kulze, but she is especially partial to lentils and black beans and recommends 1/2 cup every day.
Vitamin D is probably the most important supplement you can take, and one of the best brain food. It acts on more than over 1,000 different genes and is a substrate for testosterone, progesterone, estradiol, and other  hormones.[1] It also influences inflammation and brain calcium absorption.[2] No surprise that optimal vitamin D levels are linked to stronger cognitive function and slower brain aging.[3][4]
After I ran out of creatine, I noticed the increased difficulty, and resolved to buy it again at some point; many months later, there was a Smart Powders sale so bought it in my batch order, $12 for 1000g. As before, it made Taekwondo classes a bit easier. I paid closer attention this second time around and noticed that as one would expect, it only helped with muscular fatigue and did nothing for my aerobic issues. (I hate aerobic exercise, so it’s always been a weak point.) I eventually capped it as part of a sulbutiamine-DMAE-creatine-theanine mix. This ran out 1 May 2013. In March 2014, I spent $19 for 1kg of micronized creatine monohydrate to resume creatine use and also to use it as a placebo in a honey-sleep experiment testing Seth Roberts’s claim that a few grams of honey before bedtime would improve sleep quality: my usual flour placebo being unusable because the mechanism might be through simple sugars, which flour would digest into. (I did not do the experiment: it was going to be a fair amount of messy work capping the honey and creatine, and I didn’t believe Roberts’s claims for a second - my only reason to do it would be to prove the claim wrong but he’d just ignore me and no one else cares.) I didn’t try measuring out exact doses but just put a spoonful in my tea each morning (creatine is tasteless). The 1kg lasted from 25 March to 18 September or 178 days, so ~5.6g & $0.11 per day.
A week later: Golden Sumatran, 3 spoonfuls, a more yellowish powder. (I combined it with some tea dregs to hopefully cut the flavor a bit.) Had a paper to review that night. No (subjectively noticeable) effect on energy or productivity. I tried 4 spoonfuls at noon the next day; nothing except a little mental tension, for lack of a better word. I think that was just the harbinger of what my runny nose that day and the day before was, a head cold that laid me low during the evening.
A big part is that we are finally starting to apply complex systems science to psycho-neuro-pharmacology and a nootropic approach. The neural system is awesomely complex and old-fashioned reductionist science has a really hard time with complexity. Big companies spends hundreds of millions of dollars trying to separate the effects of just a single molecule from placebo – and nootropics invariably show up as “stacks” of many different ingredients (ours, Qualia , currently has 42 separate synergistic nootropics ingredients from alpha GPC to bacopa monnieri and L-theanine). That kind of complex, multi pathway input requires a different methodology to understand well that goes beyond simply what’s put in capsules.
Using the 21mg patches, I cut them into quarters. What I would do is I would cut out 1 quarter, and then seal the two edges with scotch tape, and put the Pac-Man back into its sleeve. Then the next time I would cut another quarter, seal the new edge, and so on. I thought that 5.25mg might be too much since I initially found 4mg gum to be too much, but it’s delivered over a long time and it wound up feeling much more like 1mg gum used regularly. I don’t know if the tape worked, but I did not notice any loss of potency. I didn’t like them as much as the gum because I would sometimes forget to take off a patch at the end of the day and it would interfere with sleep, and because the onset is much slower and I find I need stimulants more for getting started than for ongoing stimulation so it is better to have gum which can be taken precisely when needed and start acting quickly. (One case where the patches were definitely better than the gum was long car trips where slow onset is fine, since you’re most alert at the start.) When I finally ran out of patches in June 2016 (using them sparingly), I ordered gum instead.
I took the first pill at 12:48 pm. 1:18, still nothing really - head is a little foggy if anything. later noticed a steady sort of mental energy lasting for hours (got a good deal of reading and programming done) until my midnight walk, when I still felt alert, and had trouble sleeping. (Zeo reported a ZQ of 100, but a full 18 minutes awake, 2 or 3 times the usual amount.)

Recent findings also suggest that taking extra vitamins could help preserve memory, especially as we age. Researchers at Australia's University of Sydney tested 117 people in a retirement home by putting them through a battery of mental tests that included remembering a string of words, listing as many words as possible that begin with a certain letter of the alphabet, and doing mental addition and subtraction. Those who regularly took vitamin C, they found, scored higher on the tests.


But according to Professor David Weinshenker of Emory University, most people who take Provigil do not report euphoria or even a level of stimulation close to the effects of caffeine. For Weinshenker, the addiction potential of Provigil is limited, and it’s used in various treatment contexts. Provigil may be an effective medication therapy for depression, ADHD, autism and other disorders.

Panax ginseng – A review by the Cochrane Collaboration concluded that "there is a lack of convincing evidence to show a cognitive enhancing effect of Panax ginseng in healthy participants and no high quality evidence about its efficacy in patients with dementia."[36] According to the National Center for Complementary and Integrative Health, "[a]lthough Asian ginseng has been widely studied for a variety of uses, research results to date do not conclusively support health claims associated with the herb."[37]

×