This is absolutely fantastic work - Dr. Mosconi's clear, concise prose readily breaks down the science of how we can protect our beloved brains from the horrors of dementia and keep our minds humming beautifully for years. Her mastery of the various key subjects - neurobiology, nutrition, biochemistry - is incredible and her ability to decode complex scientific findings into digestible, easy-to-use advice for the layperson is second to none. This is easily one of the best popular science books I've ever come across and by far the best read on nutrition I know of.

In this large population-based cohort, we saw consistent robust associations between cola consumption and low BMD in women. The consistency of pattern across cola types and after adjustment for potential confounding variables, including calcium intake, supports the likelihood that this is not due to displacement of milk or other healthy beverages in the diet. The major differences between cola and other carbonated beverages are caffeine, phosphoric acid, and cola extract. Although caffeine likely contributes to lower BMD, the result also observed for decaffeinated cola, the lack of difference in total caffeine intake across cola intake groups, and the lack of attenuation after adjustment for caffeine content suggest that caffeine does not explain these results. A deleterious effect of phosphoric acid has been proposed (26). Cola beverages contain phosphoric acid, whereas other carbonated soft drinks (with some exceptions) do not.
By blending proven natural cognitive enhancers and naturally occurring smart brain health supporting amino acids like Cordyceps-Sinensis Extract , Coenzyme Q10 , Chlorella (from Green Algae) and Omega-3 Extract to maximize acetylcholine levels with other essential brain health supporting vitamins and amino acids, our powerful and effective brain health supplement assists in elevating serotonin and GABA levels, crucial components to remaining calm, alert, focused and mentally driven while under pressure or stress.
A picture is worth a thousand words, particularly in this case where there seems to be temporal effects, different trends for the conditions, and general confusion. So, I drag up 2.5 years of MP data (for context), plot all the data, color by magnesium/non-magnesium, and fit different LOESS lines to each as a sort of smoothed average (since categorical data is hard to interpret as a bunch of dots), which yields:
Reason: More than 50 percent of your brain is comprised of DHA! Among a big group of elderly Americans, those with the highest blood levels of DHA were about half as apt to develop dementia and 39% as apt to develop Alzheimer’s as those with lower blood levels of DHA over a nine-year period. The top 25% of those with the highest blood DHA got about 180 mg DHA a day or three servings of fish a week, researchers said. In this study, the other major fatty acid in fish oil. EPA had no effect.
By the way, since I’ll throw around the term a few more times in this article, I should probably clarify what an adaptogen actually is. The actual name adaptogen gives some hint as to what these fascinating compounds do: they help you to adapt, specifically by stimulating a physiological adaptive response to some mild, hormesis-like stressor. A process known as general adaptation syndrome (GAS) was first described by the 20th-century physician and organic chemist Hans Selye, who defined GAS as the body’s response to the demands placed upon it. When these demands are excessive and consistent, it can result in the common deleterious symptoms now associated with long-term exposure to chronic stress. GAS is comprised of an alarm stage (characterized by a burst of energy), a resistance stage (characterized by resistance or adaptation to the stressor), and – in the case of excessive and chronic stress – an exhaustion stage (characterized by energy depletion). Adaptogens are plant-derived compounds capable of modulating these phases of GAS by either downregulating stress reactions in the alarm phase or inhibiting the onset of the exhaustion phase, thus providing some degree of protection against damage from stress.
It arrived as described, a little bottle around the volume of a soda can. I had handy a plastic syringe with milliliter units which I used to measure out the nicotine-water into my tea. I began with half a ml the first day, 1ml the second day, and 2ml the third day. (My Zeo sleep scores were 85/103/86 (▁▇▁), and the latter had a feline explanation; these values are within normal variation for me, so if nicotine affects my sleep, it does so to a lesser extent than Adderall.) Subjectively, it’s hard to describe. At half a ml, I didn’t really notice anything; at 1 and 2ml, I thought I began to notice it - sort of a cleaner caffeine. It’s nice so far. It’s not as strong as I expected. I looked into whether the boiling water might be breaking it down, but the answer seems to be no - boiling tobacco is a standard way to extract nicotine, actually, and nicotine’s own boiling point is much higher than water; nor do I notice a drastic difference when I take it in ordinary water. And according to various e-cigarette sources, the liquid should be good for at least a year.
2 break days later, I took the quarter-pill at 11:22 PM. I had discovered I had for years physically possessed a very long interview not available online, and transcribing that seemed like a good way to use up a few hours. I did some reading, some Mnemosyne, and started it around midnight, finishing around 2:30 AM. There seemed a mental dip around 30 minutes after the armodafinil, but then things really picked up and I made very good progress transcribing the final draft of 9000 words in that period. (In comparison, The Conscience of the Otaking parts 2 & 4 were much easier to read than the tiny font of the RahXephon booklet, took perhaps 3 hours, and totaled only 6500 words. The nicotine is probably also to thank.) By 3:40 AM, my writing seems to be clumsier and my mind fogged. Began DNB at 3:50: 61/53/44. Went to bed at 4:05, fell asleep in 16 minutes, slept for 3:56. Waking up was easier and I felt better, so the extra hour seemed to help.

The use of prescription stimulants is especially prevalent among students.[9] Surveys suggest that 0.7–4.5% of German students have used cognitive enhancers in their lifetime.[10][11][12] Stimulants such as dimethylamylamine and methylphenidate are used on college campuses and by younger groups.[13] Based upon studies of self-reported illicit stimulant use, 5–35% of college students use diverted ADHD stimulants, which are primarily intended for performance enhancement rather than as recreational drugs.[14][15][16] Several factors positively and negatively influence an individual's willingness to use a drug for the purpose of enhancing cognitive performance. Among them are personal characteristics, drug characteristics, and characteristics of the social context.[10][11][17][18]
×