One study of helicopter pilots suggested that 600 mg of modafinil given in three doses can be used to keep pilots alert and maintain their accuracy at pre-deprivation levels for 40 hours without sleep.[60] However, significant levels of nausea and vertigo were observed. Another study of fighter pilots showed that modafinil given in three divided 100 mg doses sustained the flight control accuracy of sleep-deprived F-117 pilots to within about 27% of baseline levels for 37 hours, without any considerable side effects.[61] In an 88-hour sleep loss study of simulated military grounds operations, 400 mg/day doses were mildly helpful at maintaining alertness and performance of subjects compared to placebo, but the researchers concluded that this dose was not high enough to compensate for most of the effects of complete sleep loss.
We hope you find our website to be a reliable and valuable resource in your search for the most effective brain enhancing supplements. In addition to product reviews, you will find information about how nootropics work to stimulate memory, focus, and increase concentration, as well as tips and techniques to help you experience the greatest benefit for your efforts.
Discussions of PEA mention that it’s almost useless without a MAOI to pave the way; hence, when I decided to get deprenyl and noticed that deprenyl is a MAOI, I decided to also give PEA a second chance in conjunction with deprenyl. Unfortunately, in part due to my own shenanigans, Nubrain canceled the deprenyl order and so I have 20g of PEA sitting around. Well, it’ll keep until such time as I do get a MAOI.
It’s 3 p.m., and I am crushing my e-mail inbox. At this time of day, I’m typically struggling to stave off the post-lunch slowdown by downing another cup of coffee or two. But today, message after message is flying off my fingertips effortlessly—work e-mail, personal e-mail, digital errands I’d been meaning to run for months. I’m in the zone, as they say, and for this burst of late afternoon productivity, I might have nootropics to thank.
"Herbs will have several different compounds in them, as opposed to, let's say, a drug like amphetamine, which is basically one compound, one molecule," Sahelian says. "Herbs will have a set of several or several dozen compounds in them. It's difficult to pinpoint which one of them is the most active or whether it's the combination of many of them that are producing the result."
SOURCES: Ray Sahelian, MD. Psychopharmacology, September 2000. Human Psychopharmacology, July 2001; January 2002. Psychopharmacology Bulletin, Summer 2002. The Cochrane Database of Systematic Reviews, 2002. Archives of Neurology, November 1998. Zhongguo Yao Li Xue Bao, July 1999. Pharmacological Research, September 1999. International Clinical Psychopharmacology, March 2003. FDA web site.
[…] The 7 Best Brain Boosting Supplements | Live in the Now … – … much research has indicated that certain supplements can help sustain and promote excellent brain function as we age. The supplements recommended by the Alzheimer’s Prevention and … Take adequate supplements for brain and help your kids to perform well in their tests by enhancing … […]
Cacao contains powerful flavonols, compounds that act as antioxidants and help preserve the brain’s stem cells. “Stem cells produce new brain cells,” says Dennis Steindler, PhD, director of the Neuroscience and Aging Lab at the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, “and chronic inflammation or the beginnings of disease can damage these reparative cells and the other at-risk brain cells used for standard operating procedures, like memory and thinking.” Flavonols have also been shown to support the hippocampus, a part of the brain involved in memory and mood, notes Steindler. Stick to a square or two of dark chocolate daily.

Participants (n=205) [young adults aged 18-30 years] were recruited between July 2010 and January 2011, and were randomized to receive either a daily 150 µg (0.15mg) iodine supplement or daily placebo supplement for 32 weeks…After adjusting for baseline cognitive test score, examiner, age, sex, income, and ethnicity, iodine supplementation did not significantly predict 32 week cognitive test scores for Block Design (p=0.385), Digit Span Backward (p=0.474), Matrix Reasoning (p=0.885), Symbol Search (p=0.844), Visual Puzzles (p=0.675), Coding (p=0.858), and Letter-Number Sequencing (p=0.408).
My answer is that this is not a lot of research or very good research (not nearly as good as the research on nicotine, eg.), and assuming it’s true, I don’t value long-term memory that much because LTM is something that is easily assisted or replaced (personal archives, and spaced repetition). For me, my problems tend to be more about akrasia and energy and not getting things done, so even if a stimulant comes with a little cost to long-term memory, it’s still useful for me. I’m going continue to use the caffeine. It’s not so bad in conjunction with tea, is very cheap, and I’m already addicted, so why not? Caffeine is extremely cheap, addictive, has minimal effects on health (and may be beneficial, from the various epidemiological associations with tea/coffee/chocolate & longevity), and costs extra to remove from drinks popular regardless of their caffeine content (coffee and tea again). What would be the point of carefully investigating it? Suppose there was conclusive evidence on the topic, the value of this evidence to me would be roughly $0 or since ignorance is bliss, negative money - because unless the negative effects were drastic (which current studies rule out, although tea has other issues like fluoride or metal contents), I would not change anything about my life. Why? I enjoy my tea too much. My usual tea seller doesn’t even have decaffeinated oolong in general, much less various varieties I might want to drink, apparently because de-caffeinating is so expensive it’s not worthwhile. What am I supposed to do, give up my tea and caffeine just to save on the cost of caffeine? Buy de-caffeinating machines (which I couldn’t even find any prices for, googling)? This also holds true for people who drink coffee or caffeinated soda. (As opposed to a drug like modafinil which is expensive, and so the value of a definitive answer is substantial and would justify some more extensive calculating of cost-benefit.)
Capsule Connection sells 1000 00 pills (the largest pills) for $9. I already have a pill machine, so that doesn’t count (a sunk cost). If we sum the grams per day column from the first table, we get 9.75 grams a day. Each 00 pill can take around 0.75 grams, so we need 13 pills. (Creatine is very bulky, alas.) 13 pills per day for 1000 days is 13,000 pills, and 1,000 pills is $9 so we need 13 units and 13 times 9 is $117.
Working memory has been likened to a mental scratch pad: you use it to keep relevant data in mind while you're completing a task. (Imagine a cross-examination, in which a lawyer has to keep track of the answers a witness has given and formulate new questions based on them.) In one common test subjects are shown a series of items - usually letters or numbers - and then presented with challenges: was this number or letter in the series? Was this one? In the working-memory tests, subjects performed better on neuroenhancers, though several of the studies suggested that the effect depended on how good a subject's working memory was to begin with: the better it was, the less benefit the drugs provided.
When asked if there’s a discrepancy between Qualia’s claims and that disclaimer, Dr. Stickler points out that products such as OS aren’t promising to treat or cure any diseases. That’s the line these companies can’t cross. They can claim their product makes you smarter or more focused without data from clinical trials, but they can’t claim their pill treats traumatic brain injury, ADHD, or Alzheimer’s.
There are a variety of substances to get magnesium from. Considerable enthusiasm for the new compound magnesium l-threonate was stirred by 2 small animal rat studies finding that magnesium l-threonate was able to increase magnesium levels in the brain and improve learning/memory tasks. (There are no published human trials as of October 2015, and evidence of publication bias, which I take as evidence against there being large effects in humans.) Animal studies mean very little, of course (see the appendix), but I thought it’d be interesting to try using l-threonate, so I bought the $30 Life Extension Neuro-Mag Magnesium L-Threonate with Calcium and Vitamin D3 (205g), which according to the LEF product page works out to ~60g of Magtein™ magnesium L-threonate and ~4.31g elemental magnesium inasmuch as LEF claims 2000mg of threonate powder provides 144mg elemental magnesium or a 14:1 ratio. (I don’t need the calcium or vitamin D3, but this was the only magnesium l-threonate on Amazon.) Experiment-wise, I’ll probably look at sleep metrics and Mnemosyne performance; I put off designing a blind self-experiment until after trying some.
Whole grains. Whole grains, such as oatmeal, whole-grain breads, and brown rice can reduce the risk for heart disease. "Every organ in the body is dependent on blood flow," says Pratt. "If you promote cardiovascular health, you're promoting good flow to the organ system, which includes the brain." While wheat germ is not technically a whole grain, it also goes on Kulze's "superfoods" list because in addition to fiber, it has vitamin E and some omega-3s. Kulze suggests 1/2 cup of whole-grain cereal, 1 slice of bread two-thee times day, or 2 tablespoons of wheat germ a day.
[…] The 7 Best Brain Boosting Supplements | Live in the Now … – While under estimated in the brain health arena, adequate vitamin C is associated with a 20% reduction in risk of Alzheimer’s … Gingko Biloba, Phosphatidyl Serine and Coenzyme Q10. Opt for the best brain supplements and stay fit with an active brain. You should be very careful while … […]
Coconut oil was recommended by Pontus Granström on the Dual N-Back mailing list for boosting energy & mental clarity. It is fairly cheap (~$13 for 30 ounces) and tastes surprisingly good; it has a very bad reputation in some parts, but seems to be in the middle of a rehabilitation. Seth Robert’s Buttermind experiment found no mental benefits to coconut oil (and benefits to eating butter), but I wonder.
The best of the old world combined with the science of the new. Huntington Labs offers a Focus, Memory and Clarity supplement that delivers a targeted and specifically stacked combination of nootropics, or “brain enhancers.” Specially chosen extracts, herbs and substances work together to boost attention, creativity, flexibility, focus, speed, memory and clarity. Green Tea Extract: Traditional supplement for mental performance. Promotes better brain function naturally. Huperzine A: Boosts alertness and enhances memory; extracted from Fir moss. Bacopa Monniera: Contains Bacosides which improve cognitive function and memory. L-Glutamine: An essential amino acid that builds protein and aids memory. Huntington Labs pays special attention to the “stacking” benefits of all of these natural nootropic brain boosters, and hopes that you will experience the max benefits from your daily recommended dose. We guarantee it or your money back!
Our top recommendation for cognitive energy enhancement is Brainol. This product is formulated from all natural ingredients. Brainol is a product that works internally. This herbal blend contains 19 key ingredients such as Huperzine A, L-Tyrosine, L-Theanine, St. John’s Wort, Phosphatidylserine, Bacopa Monnieri and Guarana, to name but a few. There are no unwanted side effects from these all natural ingredients.
Still, putting unregulated brain drugs into my system feels significantly scarier than downing a latte or a Red Bull—not least because the scientific research on nootropics’ long-term effects is still so thin. One 2014 study found that Ritalin, modafinil, ampakines, and other similar stimulants could eventually reduce the “plasticity” of some of the brain’s neural networks by providing them with too much dopamine, glutamate and norepinephrine, and potentially cause long-term harm in young people whose brains were still developing. (In fact, in young people, the researchers wrote, these stimulants could actually have the opposite effect the makers intended: “Healthy individuals run the risk of pushing themselves beyond optimal levels into hyperdopaminergic and hypernoradrenergic states, thus vitiating the very behaviors they are striving to improve.”) But the researchers found no evidence that normal doses of these drugs were harmful when taken by adults.
Not all drug users are searching for a chemical escape hatch. A newer and increasingly normalized drug culture is all about heightening one’s current relationship to reality—whether at work or school—by boosting the brain’s ability to think under stress, stay alert and productive for long hours, and keep track of large amounts of information. In the name of becoming sharper traders, medical interns, or coders, people are taking pills typically prescribed for conditions including ADHD, narcolepsy, and Alzheimer’s. Others down “stacks” of special “nootropic” supplements.
The powder totals 227g of magnesium citrate, hence there is ~0.945g per magnesium citrate pill. The nutritional information states that it contains 119 servings of 0.315g magnesium elemental = 37.485g elemental, as expected, and so likewise there is 0.156g elemental magnesium per pill. This is the same dosage as the second half of the first magnesium citrate experiment (249 gel capsules there, 240 here), where the overdose effect seemed to also happen; so to avoid the overdosage, I will take one pill every other day to halve the dose to an average of ~0.078g/78mg elemental per day (piggybacking on the morning-caffeine experiment to make compliance easier).
Nicotine absorption through the stomach is variable and relatively reduced in comparison with absorption via the buccal cavity and the small intestine. Drinking, eating, and swallowing of tobacco smoke by South American Indians have frequently been reported. Tenetehara shamans reach a state of tobacco narcosis through large swallows of smoke, and Tapirape shams are said to eat smoke by forcing down large gulps of smoke only to expel it again in a rapid sequence of belches. In general, swallowing of tobacco smoke is quite frequently likened to drinking. However, although the amounts of nicotine swallowed in this way - or in the form of saturated saliva or pipe juice - may be large enough to be behaviorally significant at normal levels of gastric pH, nicotine, like other weak bases, is not significantly absorbed.
1. Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T., & Nathan, P. J. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl), 156(4), 481-484. 2. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complementary and Alternative Medicine, 12(1), 70. doi:10.1186/1472-6882-12-703. Pase, M. P., Kean, J., Sarris, J., Neale, C., Scholey, A. B., & Stough, C. (2012). The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med, 18(7), 647-652. doi:10.1089/acm.2011.03674. Raghav, S., Singh, H., Dalal, P. K., Srivastava, J. S., & Asthana, O. P. (2006). Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry, 48(4), 238-242. doi:10.4103/0019-5545.315555. Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2013). Cognitive effects of two nutraceuticals Ginseng and Bacopa [...]: a review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75(3), 728-737. doi:10.1111/bcp.120026. Prynne, C. J., Thane, C. W., Prentice, A., & Wadsworth, M. E. (2005). Intake and sources of phylloquinone (vitamin K(1)) in 4-year-old British children: comparison between 1950 and the 1990s. Public Health Nutr, 8(2), 171-180.7. Ferland, G. (2012). Vitamin K and the nervous system: an overview of its actions. Adv Nutr, 3(2), 204-212. doi:10.3945/an.111.0017848. Zeidan, Y. H., & Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends in molecular medicine, 13(8), 327-336.9. Beulens, J. W., Bots, M. L., Atsma, F., Bartelink, M. L., Prokop, M., Geleijnse, J. M., . . . van der Schouw, Y. T. (2009). High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis, 203(2), 489-493. doi:10.1016/j.atherosclerosis.2008.07.01010. Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H., van der Meer, I. M., . . . Witteman, J. C. (2004). Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr, 134(11), 3100-3105.11. Theuwissen, E., Magdeleyns, E. J., Braam, L. A., Teunissen, K. J., Knapen, M. H., Binnekamp, I. A., . . . Vermeer, C. (2014). Vitamin K status in healthy volunteers. Food Funct, 5(2), 229-234. doi:10.1039/c3fo60464k12. Barros, M. P., Poppe, S. C., & Bondan, E. F. (2014). Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients, 6(3), 1293-1317.13. Pashkow, F. J., Watumull, D. G., & Campbell, C. L. (2008). Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 101(10a), 58d-68d. doi:10.1016/j.amjcard.2008.02.01014. Annweiler, C., Schott, A. M., Berrut, G., Chauvire, V., Le Gall, D., Inzitari, M., & Beauchet, O. (2010). Vitamin D and ageing: neurological issues. Neuropsychobiology, 62(3), 139-150. doi:10.1159/00031857015. Brown, J., Bianco, J. I., McGrath, J. J., & Eyles, D. W. (2003). 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett, 343(2), 139-143.16. Naveilhan, P., Neveu, I., Wion, D., & Brachet, P. (1996). 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 7(13), 2171-2175.17. Tangpricha, V., Pearce, E. N., Chen, T. C., & Holick, M. F. (2002). Vitamin D insufficiency among free-living healthy young adults. Am J Med, 112(8), 659-662.18. Annweiler, C., Allali, G., Allain, P., Bridenbaugh, S., Schott, A. M., Kressig, R. W., & Beauchet, O. (2009). Vitamin D and cognitive performance in adults: a systematic review. European Journal of Neurology, 16(10), 1083-1089. doi:10.1111/j.1468-1331.2009.02755.x19. Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., Richard-Devantoy, S., Duque, G., & Beauchet, O. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis, 37(1), 147-171. doi:10.3233/jad-13045220. Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., . . . Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology, 79(13), 1397-1405.21. Dean, A. J., Bellgrove, M. A., Hall, T., Phan, W. M. J., Eyles, D. W., Kvaskoff, D., & McGrath, J. J. (2011). Effects of Vitamin D Supplementation on Cognitive and Emotional Functioning in Young Adults – A Randomised Controlled Trial. PLoS One, 6(11), e25966. doi:10.1371/journal.pone.002596622. Etgen, T., Sander, D., Bickel, H., Sander, K., & Forstl, H. (2012). Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord, 33(5), 297-305. doi:10.1159/00033970223. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest, 35(11), 691-699. doi:10.1111/j.1365-2362.2005.01570.x24. Huhn, S., Masouleh, S. K., Stumvoll, M., Villringer, A., & Witte, A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Frontiers in aging neuroscience, 7.25. Bradbury, J. (2011). Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients, 3(5), 529-554. doi:10.3390/nu305052926. Einother, S. J., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl), 225(2), 251-274. doi:10.1007/s00213-012-2917-427. Johnson, L. C., Spinweber, C. L., & Gomez, S. A. (1990). Benzodiazepines and caffeine: effect on daytime sleepiness, performance, and mood. Psychopharmacology (Berl), 101(2), 160-167. 28. Smith, A., Kendrick, A., Maben, A., & Salmon, J. (1994). Effects of breakfast and caffeine on cognitive performance, mood and cardiovascular functioning. Appetite, 22(1), 39-55. doi:10.1006/appe.1994.100429. Smith, A. P., Kendrick, A. M., & Maben, A. L. (1992). Effects of breakfast and caffeine on performance and mood in the late morning and after lunch. Neuropsychobiology, 26(4), 198-204. doi:11892030. Smith, B. D., Davidson, R. A., & Green, R. L. (1993). Effects of caffeine and gender on physiology and performance: further tests of a biobehavioral model. Physiol Behav, 54(3), 415-422. 31. Warburton, D. M. (1995). Effects of caffeine on cognition and mood without caffeine abstinence. Psychopharmacology (Berl), 119(1), 66-70. 32. Wilhelmus, M. M., Hay, J. L., Zuiker, R. G., Okkerse, P., Perdrieu, C., Sauser, J., . . . Silber, B. Y. (2017). Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects. J Psychopharmacol, 31(2), 222-232. doi:10.1177/026988111666859333. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 51(1), 83-133. 34. Borzelleca, J. F., Peters, D., & Hall, W. (2006). A 13-week dietary toxicity and toxicokinetic study with l-theanine in rats. Food Chem Toxicol, 44(7), 1158-1166. doi:10.1016/j.fct.2006.03.01435. Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). L-Theanine reduces psychological and physiological stress responses. Biol Psychol, 74(1), 39-45. doi:10.1016/j.biopsycho.2006.06.00636. Tian, X., Sun, L., Gou, L., Ling, X., Feng, Y., Wang, L., . . . Liu, Y. (2013). Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res, 1503, 24-32. doi:10.1016/j.brainres.2013.01.04837. Unno, K., Fujitani, K., Takamori, N., Takabayashi, F., Maeda, K., Miyazaki, H., . . . Hoshino, M. (2011). Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice. Free Radic Res, 45(8), 966-974. doi:10.3109/10715762.2011.56686938. Unno, K., Tanida, N., Ishii, N., Yamamoto, H., Iguchi, K., Hoshino, M., . . . Yamada, H. (2013). Anti-stress effect of theanine on students during pharmacy practice: positive correlation among salivary alpha-amylase activity, trait anxiety and subjective stress. Pharmacol Biochem Behav, 111, 128-135. doi:10.1016/j.pbb.2013.09.00439. Dodd, F. L., Kennedy, D. O., Riby, L. M., & Haskell-Ramsay, C. F. (2015a). A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood. Psychopharmacology (Berl), 232(14), 2563-2576. doi:10.1007/s00213-015-3895-040. Rogers, P. J., Smith, J. E., Heatherley, S. V., & Pleydell-Pearce, C. W. (2008). Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology (Berl), 195(4), 569-577. doi:10.1007/s00213-007-0938-141. Foxe, J. J., Morie, K. P., Laud, P. J., Rowson, M. J., de Bruin, E. A., & Kelly, S. P. (2012). Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology, 62(7), 2320-2327. doi:10.1016/j.neuropharm.2012.01.02042. Giesbrecht, T., Rycroft, J. A., Rowson, M. J., & De Bruin, E. A. (2010). The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness. Nutr Neurosci, 13(6), 283-290. doi:10.1179/147683010x1261146076484043. Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol, 77(2), 113-122. doi:10.1016/j.biopsycho.2007.09.00844. Kahathuduwa, C. N., Dassanayake, T. L., Amarakoon, A. M., & Weerasinghe, V. S. (2016). Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr Neurosci. doi:10.1080/1028415x.2016.114484545. Owen, G. N., Parnell, H., De Bruin, E. A., & Rycroft, J. A. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutr Neurosci, 11(4), 193-198. doi:10.1179/147683008x30151346. Einother, S. J., Martens, V. E., Rycroft, J. A., & De Bruin, E. A. (2010). L-theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite, 54(2), 406-409. doi:10.1016/j.appet.2010.01.00347. Deijen, J. B., van der Beek, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology (Berl), 109(4), 489-496.48. Lewerin, C., Matousek, M., Steen, G., Johansson, B., Steen, B., & Nilsson-Ehle, H. (2005). Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr, 81(5), 1155-1162. 49. Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr, 132(6), 1345-1356. 50. Schneider, Z., & Stroinski, A. (1987). Comprehensive B12: chemistry, biochemistry, nutrition, ecology, medicine: Walter de Gruyter.51. Polich, J., & Gloria, R. (2001). Cognitive effects of a Ginkgo biloba/vinpocetine compound in normal adults: systematic assessment of perception, attention and memory. Hum Psychopharmacol, 16(5), 409-416. doi:10.1002/hup.30852. Subhan, Z., & Hindmarch, I. (1985). Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol, 28(5), 567-571. 53. Dollins, A. B., Krock, L. P., Storm, W. F., Wurtman, R. J., & Lieberman, H. R. (1995). L-tyrosine ameliorates some effects of lower body negative pressure stress. Physiol Behav, 57(2), 223-230. 54. Shurtleff, D., Thomas, J. R., Schrot, J., Kowalski, K., & Harford, R. (1994). Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol Biochem Behav, 47(4), 935-941. 55. Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., & Ford, I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev, 9(1), 41-50. 56. Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-Analysis: Melatonin for the Treatment of Primary Sleep Disorders. PLoS One, 8(5), e63773. doi:10.1371/journal.pone.006377357. Inagawa, K., Hiraoka, T., Kohda, T., Yamadera, W., & Takahashi, M. (2006). Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep and Biological Rhythms, 4(1), 75-77. doi:10.1111/j.1479-8425.2006.00193.x58. Bannai, M., Kawai, N., Ono, K., Nakahara, K., & Murakami, N. (2012). The Effects of Glycine on Subjective Daytime Performance in Partially Sleep-Restricted Healthy Volunteers. Front Neurol, 3, 61. doi:10.3389/fneur.2012.0006159. Yamadera, W., Inagawa, K., Chiba, S., Bannai, M., Takahashi, M., & Nakayama, K. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms, 5(2), 126-131. doi:10.1111/j.1479-8425.2007.00262.x60. Tuli, H. S., Kashyap, D., Sharma, A. K., & Sandhu, S. S. (2015). Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci, 135, 147-157. doi:10.1016/j.lfs.2015.06.00461. Herxheimer, A., & Petrie, K. J. (2002). Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev(2), Cd001520. doi:10.1002/14651858.cd00152062. Deng, X., Song, Y., Manson, J. E., Signorello, L. B., Zhang, S. M., Shrubsole, M. J., . . . Dai, Q. (2013). Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 11(1), 187. doi:10.1186/1741-7015-11-18763. Murck, H., & Steiger, A. (1998). Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men -- possible therapeutic implications. Psychopharmacology (Berl), 137(3), 247-252. 64. Nielsen, F. H., Johnson, L. K., & Zeng, H. (2010). Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res, 23(4), 158-168. doi:10.1684/mrh.2010.0220
Nicotine absorption through the stomach is variable and relatively reduced in comparison with absorption via the buccal cavity and the small intestine. Drinking, eating, and swallowing of tobacco smoke by South American Indians have frequently been reported. Tenetehara shamans reach a state of tobacco narcosis through large swallows of smoke, and Tapirape shams are said to eat smoke by forcing down large gulps of smoke only to expel it again in a rapid sequence of belches. In general, swallowing of tobacco smoke is quite frequently likened to drinking. However, although the amounts of nicotine swallowed in this way - or in the form of saturated saliva or pipe juice - may be large enough to be behaviorally significant at normal levels of gastric pH, nicotine, like other weak bases, is not significantly absorbed.
The main concern with pharmaceutical drugs is adverse effects, which also apply to nootropics with undefined effects. Long-term safety evidence is typically unavailable for nootropics.[13] Racetams — piracetam and other compounds that are structurally related to piracetam — have few serious adverse effects and low toxicity, but there is little evidence that they enhance cognition in people having no cognitive impairments.[19]