The nootropic sulbutiamine, of the synthetic B-vitamin-derived nootropics family, is generally considered a low-risk supplement; however, some users have reported that the supplement has addictive qualities. While there is no firm evidence of sulbutiamine addiction, the risk may increase at high dosages. For instance, users who consume this supplement for 10 consecutive days may experience withdrawal for two to five days. There are also increased risks when sulbutiamine is taken with antipsychotic medications.[8]
-Raw cacao is rich in theobromine, a powerful antioxidant known to support cellular aging and reduce the risk of heart disease. Its effects are similar to those of caffeine, as they both are vasodilators and improve blood flow to the brain [except cacao won’t give you jitters]...You can use raw cacao to make cacao tea, or in your smoothies. Dark chocolate with cocoa content of 80% or higher is also rich in theobromine and natural antioxidants. Besides, chocolate makes you happy. I have a small piece of high-quality dark chocolate, like 85% or 90% dark, every day.
One of the most popular legal stimulants in the world, nicotine is often conflated with the harmful effects of tobacco; considered on its own, it has performance & possibly health benefits. Nicotine is widely available at moderate prices as long-acting nicotine patches, gums, lozenges, and suspended in water for vaping. While intended for smoking cessation, there is no reason one cannot use a nicotine patch or nicotine gum for its stimulant effects.

She speaks from professional and personal experience. When she first moved to the United States from Italy at age 24 she was struck by how shifting from the Mediterranean-style diet she grew up on to a standard American diet negatively impacted her physical health and work performance. The experience led her to more closely study nutrition and the link between diet and brain health. In this excerpt from a longer interview, she discusses the brain foods you should be eating.
Tuesday: I went to bed at 1am, and first woke up at 6am, and I wrote down a dream; the lucid dreaming book I was reading advised that waking up in the morning and then going back for a short nap often causes lucid dreams, so I tried that - and wound up waking up at 10am with no dreams at all. Oops. I take a pill, but the whole day I don’t feel so hot, although my conversation and arguments seem as cogent as ever. I’m also having a terrible time focusing on any actual work. At 8 I take another; I’m behind on too many things, and it looks like I need an all-nighter to catch up. The dose is no good; at 11, I still feel like at 8, possibly worse, and I take another along with the choline+piracetam (which makes a total of 600mg for the day). Come 12:30, and I disconsolately note that I don’t seem any better, although I still seem to understand the IQ essays I am reading. I wonder if this is tolerance to modafinil, or perhaps sleep catching up to me? Possibly it’s just that I don’t remember what the quasi-light-headedness of modafinil felt like. I feel this sort of zombie-like state without change to 4am, so it must be doing something, when I give up and go to bed, getting up at 7:30 without too much trouble. Some N-backing at 9am gives me some low scores but also some pretty high scores (38/43/66/40/24/67/60/71/54 or ▂▂▆▂▁▆▅▇▄), which suggests I can perform normally if I concentrate. I take another pill and am fine the rest of the day, going to bed at 1am as usual.
I posted a link to the survey on my Google+ account, and inserted the link at the top of all pages; 51 people completed all 11 binary choices (most of them coming from North America & Europe), which seems adequate since the 11 questions are all asking the same question, and 561 responses to one question is quite a few. A few different statistical tests seem applicable: a chi-squared test whether there’s a difference between all the answers, a two-sample test on the averages, and most meaningfully, summing up the responses as a single pair of numbers and doing a binomial test:
If Alex, the Harvard student, and Paul Phillips, the poker player, consider their use of neuroenhancers a private act, Nicholas Seltzer sees his habit as a pursuit that aligns him with a larger movement for improving humanity. Seltzer's job as a researcher at a defence-oriented thinktank in northern Virginia has not left him feeling as intellectually alive as he would like. To compensate, he writes papers in his spare time on subjects like "human biological evolution and warfare". Seltzer, 30, told me he worried that he "didn't have the mental energy, the endurance, the... the sponginess that I seem to recall having when I was younger".
at first impression it took a while to kick in... then a burst of creativity... after 15 days of taking it, I noticed a plateau affect... I kept taking it... took the two daily in one dose and I noticed I was very awake but lacked the initiative to do anything, I noticed an increase in libido which kind of sucked because I'm single but that boost of creativity that was experienced the firs couple of days was not there... I don't know if it has to do with the fact that I skipped a couple of days. I still have maybe like 10 doses left... I purchased a bottle of Accellerin and I noticed that it's the same bottle with the same lettering... is this a newer version of Addium? Anyway, I'm going to keep on taking the product to finish the bottle and I'll give a second review within the next 15 days.

The real culprit at the heart of the problem may be impossible to regulate – the human desire to have a supercharged brain. For now, this wish is still largely relegated to the domain of fiction. Researchers point out that increasing the power of certain parts of the brain, such as areas responsible for learning and focus, would likely deprive other parts of the brain that are needed to live. Despite the appeal of a super-brain, a better goal is still to maintain a balanced brain and lifestyle.
the larger size of the community enables economies of scale and increases the peak sophistication possible. In a small nootropics community, there is likely to be no one knowledgeable about statistics/experimentation/biochemistry/neuroscience/whatever-you-need-for-a-particular-discussion, and the available funds increase: consider /r/Nootropics’s testing program, which is doable only because it’s a large lucrative community to sell to so the sellers are willing to donate funds for independent lab tests/Certificates of Analysis (COAs) to be done. If there were 1000 readers rather than 23,295, how could this ever happen short of one of those 1000 readers being very altruistic?
the larger size of the community enables economies of scale and increases the peak sophistication possible. In a small nootropics community, there is likely to be no one knowledgeable about statistics/experimentation/biochemistry/neuroscience/whatever-you-need-for-a-particular-discussion, and the available funds increase: consider /r/Nootropics’s testing program, which is doable only because it’s a large lucrative community to sell to so the sellers are willing to donate funds for independent lab tests/Certificates of Analysis (COAs) to be done. If there were 1000 readers rather than 23,295, how could this ever happen short of one of those 1000 readers being very altruistic?
Mercury exposure is among several other heavy metals, such as lead, aluminium and cadmium, that have been implicated in the aetiology of ADHD. Childhood exposure to mercury is predominantly through the consumption of seafood, dental amalgams and vaccines containing thimerosal. The reason why mercury can be so problematic, as well as other metals, is that it is capable of breaching the blood brain barrier. This is the brain’s ‘high fortress’, an intelligent gateway system that filters through molecules that are needed in the brain such as cells, nutrients and signalling molecules, and filters out pathogens and toxins.

Low level laser therapy (LLLT) is a curious treatment based on the application of a few minutes of weak light in specific near-infrared wavelengths (the name is a bit of a misnomer as LEDs seem to be employed more these days, due to the laser aspect being unnecessary and LEDs much cheaper). Unlike most kinds of light therapy, it doesn’t seem to have anything to do with circadian rhythms or zeitgebers. Proponents claim efficacy in treating physical injuries, back pain, and numerous other ailments, recently extending it to case studies of mental issues like brain fog. (It’s applied to injured parts; for the brain, it’s typically applied to points on the skull like F3 or F4.) And LLLT is, naturally, completely safe without any side effects or risk of injury.
1. Stough, C., Lloyd, J., Clarke, J., Downey, L. A., Hutchison, C. W., Rodgers, T., & Nathan, P. J. (2001). The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive function in healthy human subjects. Psychopharmacology (Berl), 156(4), 481-484. 2. Ishaque, S., Shamseer, L., Bukutu, C., & Vohra, S. (2012). Rhodiola rosea for physical and mental fatigue: a systematic review. BMC Complementary and Alternative Medicine, 12(1), 70. doi:10.1186/1472-6882-12-703. Pase, M. P., Kean, J., Sarris, J., Neale, C., Scholey, A. B., & Stough, C. (2012). The cognitive-enhancing effects of Bacopa monnieri: a systematic review of randomized, controlled human clinical trials. J Altern Complement Med, 18(7), 647-652. doi:10.1089/acm.2011.03674. Raghav, S., Singh, H., Dalal, P. K., Srivastava, J. S., & Asthana, O. P. (2006). Randomized controlled trial of standardized Bacopa monniera extract in age-associated memory impairment. Indian J Psychiatry, 48(4), 238-242. doi:10.4103/0019-5545.315555. Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2013). Cognitive effects of two nutraceuticals Ginseng and Bacopa [...]: a review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75(3), 728-737. doi:10.1111/bcp.120026. Prynne, C. J., Thane, C. W., Prentice, A., & Wadsworth, M. E. (2005). Intake and sources of phylloquinone (vitamin K(1)) in 4-year-old British children: comparison between 1950 and the 1990s. Public Health Nutr, 8(2), 171-180.7. Ferland, G. (2012). Vitamin K and the nervous system: an overview of its actions. Adv Nutr, 3(2), 204-212. doi:10.3945/an.111.0017848. Zeidan, Y. H., & Hannun, Y. A. (2007). Translational aspects of sphingolipid metabolism. Trends in molecular medicine, 13(8), 327-336.9. Beulens, J. W., Bots, M. L., Atsma, F., Bartelink, M. L., Prokop, M., Geleijnse, J. M., . . . van der Schouw, Y. T. (2009). High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis, 203(2), 489-493. doi:10.1016/j.atherosclerosis.2008.07.01010. Geleijnse, J. M., Vermeer, C., Grobbee, D. E., Schurgers, L. J., Knapen, M. H., van der Meer, I. M., . . . Witteman, J. C. (2004). Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr, 134(11), 3100-3105.11. Theuwissen, E., Magdeleyns, E. J., Braam, L. A., Teunissen, K. J., Knapen, M. H., Binnekamp, I. A., . . . Vermeer, C. (2014). Vitamin K status in healthy volunteers. Food Funct, 5(2), 229-234. doi:10.1039/c3fo60464k12. Barros, M. P., Poppe, S. C., & Bondan, E. F. (2014). Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients, 6(3), 1293-1317.13. Pashkow, F. J., Watumull, D. G., & Campbell, C. L. (2008). Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol, 101(10a), 58d-68d. doi:10.1016/j.amjcard.2008.02.01014. Annweiler, C., Schott, A. M., Berrut, G., Chauvire, V., Le Gall, D., Inzitari, M., & Beauchet, O. (2010). Vitamin D and ageing: neurological issues. Neuropsychobiology, 62(3), 139-150. doi:10.1159/00031857015. Brown, J., Bianco, J. I., McGrath, J. J., & Eyles, D. W. (2003). 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett, 343(2), 139-143.16. Naveilhan, P., Neveu, I., Wion, D., & Brachet, P. (1996). 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport, 7(13), 2171-2175.17. Tangpricha, V., Pearce, E. N., Chen, T. C., & Holick, M. F. (2002). Vitamin D insufficiency among free-living healthy young adults. Am J Med, 112(8), 659-662.18. Annweiler, C., Allali, G., Allain, P., Bridenbaugh, S., Schott, A. M., Kressig, R. W., & Beauchet, O. (2009). Vitamin D and cognitive performance in adults: a systematic review. European Journal of Neurology, 16(10), 1083-1089. doi:10.1111/j.1468-1331.2009.02755.x19. Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., Richard-Devantoy, S., Duque, G., & Beauchet, O. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. J Alzheimers Dis, 37(1), 147-171. doi:10.3233/jad-13045220. Balion, C., Griffith, L. E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., . . . Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology, 79(13), 1397-1405.21. Dean, A. J., Bellgrove, M. A., Hall, T., Phan, W. M. J., Eyles, D. W., Kvaskoff, D., & McGrath, J. J. (2011). Effects of Vitamin D Supplementation on Cognitive and Emotional Functioning in Young Adults – A Randomised Controlled Trial. PLoS One, 6(11), e25966. doi:10.1371/journal.pone.002596622. Etgen, T., Sander, D., Bickel, H., Sander, K., & Forstl, H. (2012). Vitamin D deficiency, cognitive impairment and dementia: a systematic review and meta-analysis. Dement Geriatr Cogn Disord, 33(5), 297-305. doi:10.1159/00033970223. Fontani, G., Corradeschi, F., Felici, A., Alfatti, F., Migliorini, S., & Lodi, L. (2005). Cognitive and physiological effects of Omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest, 35(11), 691-699. doi:10.1111/j.1365-2362.2005.01570.x24. Huhn, S., Masouleh, S. K., Stumvoll, M., Villringer, A., & Witte, A. V. (2015). Components of a Mediterranean diet and their impact on cognitive functions in aging. Frontiers in aging neuroscience, 7.25. Bradbury, J. (2011). Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain. Nutrients, 3(5), 529-554. doi:10.3390/nu305052926. Einother, S. J., & Giesbrecht, T. (2013). Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl), 225(2), 251-274. doi:10.1007/s00213-012-2917-427. Johnson, L. C., Spinweber, C. L., & Gomez, S. A. (1990). Benzodiazepines and caffeine: effect on daytime sleepiness, performance, and mood. Psychopharmacology (Berl), 101(2), 160-167. 28. Smith, A., Kendrick, A., Maben, A., & Salmon, J. (1994). Effects of breakfast and caffeine on cognitive performance, mood and cardiovascular functioning. Appetite, 22(1), 39-55. doi:10.1006/appe.1994.100429. Smith, A. P., Kendrick, A. M., & Maben, A. L. (1992). Effects of breakfast and caffeine on performance and mood in the late morning and after lunch. Neuropsychobiology, 26(4), 198-204. doi:11892030. Smith, B. D., Davidson, R. A., & Green, R. L. (1993). Effects of caffeine and gender on physiology and performance: further tests of a biobehavioral model. Physiol Behav, 54(3), 415-422. 31. Warburton, D. M. (1995). Effects of caffeine on cognition and mood without caffeine abstinence. Psychopharmacology (Berl), 119(1), 66-70. 32. Wilhelmus, M. M., Hay, J. L., Zuiker, R. G., Okkerse, P., Perdrieu, C., Sauser, J., . . . Silber, B. Y. (2017). Effects of a single, oral 60 mg caffeine dose on attention in healthy adult subjects. J Psychopharmacol, 31(2), 222-232. doi:10.1177/026988111666859333. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., & Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev, 51(1), 83-133. 34. Borzelleca, J. F., Peters, D., & Hall, W. (2006). A 13-week dietary toxicity and toxicokinetic study with l-theanine in rats. Food Chem Toxicol, 44(7), 1158-1166. doi:10.1016/j.fct.2006.03.01435. Kimura, K., Ozeki, M., Juneja, L. R., & Ohira, H. (2007). L-Theanine reduces psychological and physiological stress responses. Biol Psychol, 74(1), 39-45. doi:10.1016/j.biopsycho.2006.06.00636. Tian, X., Sun, L., Gou, L., Ling, X., Feng, Y., Wang, L., . . . Liu, Y. (2013). Protective effect of l-theanine on chronic restraint stress-induced cognitive impairments in mice. Brain Res, 1503, 24-32. doi:10.1016/j.brainres.2013.01.04837. Unno, K., Fujitani, K., Takamori, N., Takabayashi, F., Maeda, K., Miyazaki, H., . . . Hoshino, M. (2011). Theanine intake improves the shortened lifespan, cognitive dysfunction and behavioural depression that are induced by chronic psychosocial stress in mice. Free Radic Res, 45(8), 966-974. doi:10.3109/10715762.2011.56686938. Unno, K., Tanida, N., Ishii, N., Yamamoto, H., Iguchi, K., Hoshino, M., . . . Yamada, H. (2013). Anti-stress effect of theanine on students during pharmacy practice: positive correlation among salivary alpha-amylase activity, trait anxiety and subjective stress. Pharmacol Biochem Behav, 111, 128-135. doi:10.1016/j.pbb.2013.09.00439. Dodd, F. L., Kennedy, D. O., Riby, L. M., & Haskell-Ramsay, C. F. (2015a). A double-blind, placebo-controlled study evaluating the effects of caffeine and L-theanine both alone and in combination on cerebral blood flow, cognition and mood. Psychopharmacology (Berl), 232(14), 2563-2576. doi:10.1007/s00213-015-3895-040. Rogers, P. J., Smith, J. E., Heatherley, S. V., & Pleydell-Pearce, C. W. (2008). Time for tea: mood, blood pressure and cognitive performance effects of caffeine and theanine administered alone and together. Psychopharmacology (Berl), 195(4), 569-577. doi:10.1007/s00213-007-0938-141. Foxe, J. J., Morie, K. P., Laud, P. J., Rowson, M. J., de Bruin, E. A., & Kelly, S. P. (2012). Assessing the effects of caffeine and theanine on the maintenance of vigilance during a sustained attention task. Neuropharmacology, 62(7), 2320-2327. doi:10.1016/j.neuropharm.2012.01.02042. Giesbrecht, T., Rycroft, J. A., Rowson, M. J., & De Bruin, E. A. (2010). The combination of L-theanine and caffeine improves cognitive performance and increases subjective alertness. Nutr Neurosci, 13(6), 283-290. doi:10.1179/147683010x1261146076484043. Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The effects of L-theanine, caffeine and their combination on cognition and mood. Biol Psychol, 77(2), 113-122. doi:10.1016/j.biopsycho.2007.09.00844. Kahathuduwa, C. N., Dassanayake, T. L., Amarakoon, A. M., & Weerasinghe, V. S. (2016). Acute effects of theanine, caffeine and theanine-caffeine combination on attention. Nutr Neurosci. doi:10.1080/1028415x.2016.114484545. Owen, G. N., Parnell, H., De Bruin, E. A., & Rycroft, J. A. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutr Neurosci, 11(4), 193-198. doi:10.1179/147683008x30151346. Einother, S. J., Martens, V. E., Rycroft, J. A., & De Bruin, E. A. (2010). L-theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite, 54(2), 406-409. doi:10.1016/j.appet.2010.01.00347. Deijen, J. B., van der Beek, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: effects on mood, memory, performance and mental effort. Psychopharmacology (Berl), 109(4), 489-496.48. Lewerin, C., Matousek, M., Steen, G., Johansson, B., Steen, B., & Nilsson-Ehle, H. (2005). Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr, 81(5), 1155-1162. 49. Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr, 132(6), 1345-1356. 50. Schneider, Z., & Stroinski, A. (1987). Comprehensive B12: chemistry, biochemistry, nutrition, ecology, medicine: Walter de Gruyter.51. Polich, J., & Gloria, R. (2001). Cognitive effects of a Ginkgo biloba/vinpocetine compound in normal adults: systematic assessment of perception, attention and memory. Hum Psychopharmacol, 16(5), 409-416. doi:10.1002/hup.30852. Subhan, Z., & Hindmarch, I. (1985). Psychopharmacological effects of vinpocetine in normal healthy volunteers. Eur J Clin Pharmacol, 28(5), 567-571. 53. Dollins, A. B., Krock, L. P., Storm, W. F., Wurtman, R. J., & Lieberman, H. R. (1995). L-tyrosine ameliorates some effects of lower body negative pressure stress. Physiol Behav, 57(2), 223-230. 54. Shurtleff, D., Thomas, J. R., Schrot, J., Kowalski, K., & Harford, R. (1994). Tyrosine reverses a cold-induced working memory deficit in humans. Pharmacol Biochem Behav, 47(4), 935-941. 55. Brzezinski, A., Vangel, M. G., Wurtman, R. J., Norrie, G., Zhdanova, I., Ben-Shushan, A., & Ford, I. (2005). Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev, 9(1), 41-50. 56. Ferracioli-Oda, E., Qawasmi, A., & Bloch, M. H. (2013). Meta-Analysis: Melatonin for the Treatment of Primary Sleep Disorders. PLoS One, 8(5), e63773. doi:10.1371/journal.pone.006377357. Inagawa, K., Hiraoka, T., Kohda, T., Yamadera, W., & Takahashi, M. (2006). Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep and Biological Rhythms, 4(1), 75-77. doi:10.1111/j.1479-8425.2006.00193.x58. Bannai, M., Kawai, N., Ono, K., Nakahara, K., & Murakami, N. (2012). The Effects of Glycine on Subjective Daytime Performance in Partially Sleep-Restricted Healthy Volunteers. Front Neurol, 3, 61. doi:10.3389/fneur.2012.0006159. Yamadera, W., Inagawa, K., Chiba, S., Bannai, M., Takahashi, M., & Nakayama, K. (2007). Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes. Sleep and Biological Rhythms, 5(2), 126-131. doi:10.1111/j.1479-8425.2007.00262.x60. Tuli, H. S., Kashyap, D., Sharma, A. K., & Sandhu, S. S. (2015). Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci, 135, 147-157. doi:10.1016/j.lfs.2015.06.00461. Herxheimer, A., & Petrie, K. J. (2002). Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst Rev(2), Cd001520. doi:10.1002/14651858.cd00152062. Deng, X., Song, Y., Manson, J. E., Signorello, L. B., Zhang, S. M., Shrubsole, M. J., . . . Dai, Q. (2013). Magnesium, vitamin D status and mortality: results from US National Health and Nutrition Examination Survey (NHANES) 2001 to 2006 and NHANES III. BMC Med, 11(1), 187. doi:10.1186/1741-7015-11-18763. Murck, H., & Steiger, A. (1998). Mg2+ reduces ACTH secretion and enhances spindle power without changing delta power during sleep in men -- possible therapeutic implications. Psychopharmacology (Berl), 137(3), 247-252. 64. Nielsen, F. H., Johnson, L. K., & Zeng, H. (2010). Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res, 23(4), 158-168. doi:10.1684/mrh.2010.0220
Obviously, as you can see, there are a host of benefits to the better living through science to be had through optimizing your brain with specific compounds. So, putting aside the intriguing topic of psychedelics for the moment (yes, yes, I know you probably want to know how to microdose with LSD or psilocybin), what’s the difference between a smart drug and a nootropic, and how do you choose which to take? You’re about to find out.

An important dietary step to avoid heavy metal toxicity is choosing seafood and fish that has reduced levels of exposure. The Seafood Watch web page is a fantastic resource that has an extensive list of fish, seafood and sushi products that are safe, as well as those that are best to stay away from. For example, choosing wild pacific caught salmon is safer than Atlantic caught salmon.

But when aficionados talk about nootropics, they usually refer to substances that have supposedly few side effects and low toxicity. Most often they mean piracetam, which Giurgea first synthesized in 1964 and which is approved for therapeutic use in dozens of countries for use in adults and the elderly. Not so in the United States, however, where officially it can be sold only for research purposes.
Finding a usable product on Amazon caused me some difficulties. I wanted a 500mg magnesium-citrate-only product at <$20 for 120 doses, but I discovered most of the selection for magnesium citrate had sub-500mg doses, involved calcium citrate or other substances like zinc (not necessarily a bad thing, but would confound an experiment), were mostly magnesium oxide rather than citrate, or some still other problem. Ultimately I settled on Solgar’s $13 120x400mg magnesium citrate as acceptable. (To compare with the bulkiness of the LEF vitamin D+l-threonate powder, the Office of Dietary Supplements says magnesium citrate is 16% magnesium, so to get 400mg of magnesium as claimed, would take 2.5g of material, rather than 7g for 200mg; even if l-threonate is absorbed 100% and citrate 50%, the citrate is ahead. The pills turn out to be wider and longer than my 00 pills; if I want to get them into my gel capsules, I have to crush them into fine powder. The powder from one pill turns out to take up 2 00 pills.)
That's been my experience with this product, just trying to get it to work. Some days, I may get lucky and feel very alert even with no sleep, other days it does nothing. By three stars, I mean more of an average rating, not that I didn't like it. It just didn't work as well as advertised. But everyone's body is different, so you have to take these under various conditions to see what works for you. I may buy some more and update my review later since I'm finding the right pattern to making the pills work, and to see if it works better in autumn/winter. Remember to take breaks with these too, it's quite a bit of vitamins and minerals to take everyday.
Take the synthetic nootropic piracetam, for example. Since piracetam has been shown to improve cell membrane function and cause a host of neuroprotective effects, when combined with other cell membrane stabilizing supplements such as choline and DHA, the brain cells on piracetam can better signal and relay messages to each other for a longer period of time, which improves cognition and brain activity and decreases risk of a crash. So one example of an intelligent “stack” is piracetam taken with choline and DHA.
The Neurohacker Collective is a group of scientists, academics, and creatives who, among other things, sell nootropics. One of its premier products is Qualia Original Stack (OS), which has 41 ingredients. The large print says it improves focus, mood, and energy within 30 minutes and “supports long-term brain health.” A 22-dose supply costs $129. Such stacks operate on the idea that synergies among ingredients yield additional benefits.
Racetams, such as piracetam, oxiracetam, and aniracetam, which are often marketed as cognitive enhancers and sold over-the-counter. Racetams are often referred to as nootropics, but this property is not well established.[31] The racetams have poorly understood mechanisms, although piracetam and aniracetam are known to act as positive allosteric modulators of AMPA receptors and appear to modulate cholinergic systems.[32]